Skip to main content
Log in

Prediction of Reflectance of Paint Films Using Many-Flux Theory and its Comparison with Experimentally Measured Values

  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Color developed by the pigmented object is attributed to scattering and absorption of light by pigments. In applied colorimetry, the interaction of radiant energy with pigments is trated using two flux, Kubelka-Munk theory, which is a highly simplified version of radiative transfer theory. To overcome the limitations of K-M theory, the mathematical models with four and six flux are proposed in the literature. Recently Mudgett and Richards have developed the multiple scattering equations, enable to handle as many as forty flux in the turbid media. In the present study, the attempts are made to predict the reflectance of three paint dispersions e.g. titanium dioxide, phthalocyanine green and iron oxide-red pigments using many flux equations. The particle sizes required for computations are determined using light scattering and electron microscopy methods. The predicted reflectances are compared with the experimentally measured values of the paint films, using recording type Shimadzu spectrophotometer equipped with integrating sphere. The predicted results moderately agree with experimental results. The discrepancies between theoretical and experimental values have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. T. Melamed, J of Appl. Phy., 34, 560 (1963)

    Article  ADS  Google Scholar 

  2. E. L. Simmons, Opt. Acta, 18, 59 (1971).

    Article  ADS  Google Scholar 

  3. E. L. Simmons, Opt. Acta, 22, 71 (1975).

    Article  ADS  Google Scholar 

  4. E. L. Simmons, Appl. Phy., 46, 344 (1975).

    Article  ADS  Google Scholar 

  5. E. L. Simmons, Appl. Optics., 4, 1380 (1975).

    Article  ADS  Google Scholar 

  6. S. E. Orchard, J Oil Colour chem Assoc. 51, 44, (1968).

    Google Scholar 

  7. P. Kubelka and F. Munk Z. Tech. Physik, 12, 593 (1931).

    Google Scholar 

  8. G. Kortiim, Reflectance Spectroscopy, translated by J. Lohr, Sprinder-Verlag, New York, (1969).

  9. H. K. Beasley, J. T. Atkings, and F. W. Billmeyer, Jr. Scattering and Absorption of Light in Turbid Media, pp 765–785 in R. L. Rowell and R. S. Stein, eds. Electromagnetic Scattering Gordon and Breach Science Publishers, New York (1976).

    Google Scholar 

  10. A. G. Emslie and J. R. Aronson, Appl. Opt., 12, 2563 (1973).

    Article  ADS  Google Scholar 

  11. J. Brinkworth, J. Phys. D. Appl. Physc. -4, 1105 (1971).

    Article  ADS  Google Scholar 

  12. K. Klier, J. Opt. Soc. Am., 62, 882 (1972).

    Article  ADS  Google Scholar 

  13. R. W. Nelson, J. Opt. Soc. Am, 62 1368 (1972).

    ADS  Google Scholar 

  14. E. Allen AIC Congr. Color 77, Adam Hilger, London, 153 (1977).

    Google Scholar 

  15. S. Chandrasekhar, Radiative Transfer, Dover Publications, Publications, Inc. New York, (1960).

    Google Scholar 

  16. P.S. Mudgett and L.W. Richards, Applied Optics, 10, 1485 (1971).

    Article  ADS  Google Scholar 

  17. P.S. Mudgett and L.W. Richards, J. Colloid Interface Sci., 39, 551 (1972).

    Article  ADS  Google Scholar 

  18. International Business Machines, System/360 Scientific Subroutine Package, manual H 20-0205-3.

  19. H. S. Shah, P. M. Vora, K.T. Mehta, PAINT INDIA, 21 (1984).

    Google Scholar 

  20. K.T. Mehta and H.S. Shah, J Scient Ind. Res., 41, 292 (1982).

    Google Scholar 

  21. R. V. Desai, R.V. Mehta, H.S. Shah, J.N. Desai, and D.B. Vaidya, J of Opt. 3, 17 (1974).

    Google Scholar 

  22. Subroutine, QS from IBM System 360 Scientific Subroutine Packages, Version 111, International Business Machaine, Inc. see publication GH 20-0205-04 for description.

  23. C.M. Chu, S. W. Churchill J. Opt. Soc. Am, 45, 985 (1995).

    Google Scholar 

  24. J.V. Dave, Subroutines for computing the Parameters of the Electromagnetic Rediation Scattered by a Sphere, IBM Type 111 Program 360, D-17.4.002, International Business Machines Corporations, (1968).

    Google Scholar 

  25. W. A. Allen, J. Opt. Soc. Am, 63, 664 (1973).

    Article  ADS  Google Scholar 

  26. W. Hughes, R. D. Murley and D.F. Tunstall, IXth FATIPEC Congress 1968, Section I. pp, 88, Chemiedes Peintures, Bruxelles, Belgium, 1968.

    Google Scholar 

  27. J. L. Saunderson, J Opt. Soc. Am, 32, 727 (1947)

    Article  ADS  Google Scholar 

  28. F. W. Billmeyer, Jr. and D. H. Alman, J. Color Appearance 2(1), 36 (1973).

    Google Scholar 

  29. A. R. Hanke, Maximum Color Strength of Pigment Dispersions, paper presented at the Inter-Socity Colour council Williamsburg Conference, (1966).

    Google Scholar 

  30. M. Kerker, P. Scheiner, D.D. Cooke, J. P. Kratohvill, J. Colloid and Interface Sci., 71, 176 (1979).

    Article  ADS  Google Scholar 

  31. K. V. Gehlen H.N. Piller, Jahrbuch Min Geol. Beilageband, 4, 97 (1969).

    Google Scholar 

  32. E. Larsen, H. Berman, U.S. Geol, Survey Bull, 846 (1934).

    Google Scholar 

  33. C. N. Forsterling, Jahrbuch Min. Geol Beilageband, 25, 344 (1908).

    Google Scholar 

  34. P. C. Bailey, J. Appl. Phys. 31, 398 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, K.T., Shah, H.S. Prediction of Reflectance of Paint Films Using Many-Flux Theory and its Comparison with Experimentally Measured Values. J Opt 15, 13–20 (1986). https://doi.org/10.1007/BF03549142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03549142

Navigation