Skip to main content
Log in

Structure-property relationships in nuclei. Prediction of the binding energy per nucleon using a quantum similarity approach

  • Published:
Il Nuovo Cimento A (1971-1996)

Summary

The binding energy per nucleon of a system of 73 stable nuclei is was predicted by means of a multilinear regression using with nuclear structural descriptors as variables. Quantum similarity measures were chosen as these descriptors. Valuable results, q2=0.940 and r2=0.949, were achieved when using 3 parameters. The model is recalculated with only 60 nuclei as a training set, and then the binding energy per nucleon for the remaining nuclei was predicted. Finally, the randomisation test was used to validate the model and to confirm the real predictive power of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubinyi H., 3D QSAR in Drug Design (ESCOM, Leiden) 1993.

    Google Scholar 

  2. Carbó R., Arnau J. and Leyda L., Int. J. Quant. Chem., 17 (1980) 1185.

    Article  Google Scholar 

  3. Carbó R. and Domingo L., Int. J. Quant. Chem., 23 (1987) 517.

    Article  Google Scholar 

  4. Besalú E., Carbó R., Mestres J. and Solá M., Topics Curr. Chem., 173 (1995) 31.

    Article  Google Scholar 

  5. Carbó R. and Besalú E., in Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, edited by Carbó R. (Kluwer, Amsterdam) 1995.

  6. Carbó-Dorca R., Besalú E., Amat L. and Fradera X., in Advances in Molecular Similarity, edited by Mezey P. G. and Carbó R., Vol. 1 (JAI Press, Greenwich) 1996.

  7. Löwdin P. O., Phys. Rev., 97 (1955) 1474.

    Article  ADS  MathSciNet  Google Scholar 

  8. McWeeny R., Proc. R. Soc. London A, 253 (1959) 242.

    Article  ADS  MathSciNet  Google Scholar 

  9. Hohenberg P. and Kohn W., Phys. Rev. B, 136 (1964) 864.

    Article  ADS  Google Scholar 

  10. Fradera X., Amat L., Besalú, E. and Carbó-Dorca R., Quant. Struct.-Act. Relat., 16 (1997) 25.

    Article  Google Scholar 

  11. Lobato M., Amat L., Besalú E. and Carbó-Dorca R., Quant. Struct.-Act. Relat., 16 (1997) 465.

    Article  Google Scholar 

  12. Amat L., Robert D., Besalú E. and Carbó-Dorca R., J. Chem. Inf. Comput. Sci., 39 (1998) 624.

    Article  Google Scholar 

  13. Robert D. and Carbó-Dorca R., J. Chem. Inf. Comput. Sci., 39 (1998) 620.

    Article  Google Scholar 

  14. Amat L., Carbó-Dorca R. and Ponec R., J. Comput. Chem., 19 (1998) 1575.

    Article  Google Scholar 

  15. Robert D. and Carbó-Dorca R., J. Math. Chem., 23 (1998) 327.

    Article  Google Scholar 

  16. Skyrme T. H. R., Nucl. Phys., 9 (1959) 615.

    Article  Google Scholar 

  17. Vautherin D. and Brink D. M., Phys. Rev. C, 5 (1972) 626.

    Article  ADS  Google Scholar 

  18. Bartel J., Quentin P., Brack M., Guet C. and Hakansson H.-B., Nucl. Phys. A, 235 (1977) 219.

    Google Scholar 

  19. Vautherin D., Phys. Rev. C, 7 (1973) 296.

    Article  ADS  Google Scholar 

  20. Ring P. and Schuck P., The Nuclear Many Body Problem (Springer, Berlin) 1980.

    Book  Google Scholar 

  21. Lawson R. D., Theory of the Nuclear Shell Model (Oxford University Press, New York) 1980.

    Google Scholar 

  22. Mardia K. V., Kent J. T. and Bibby J. M., Multivariate Analysis (Academic Press, London) 1979.

    MATH  Google Scholar 

  23. Eckart C. and Young G., Psychometrika, 1 (1936) 211.

    Article  Google Scholar 

  24. Carbó R., Besalú E., Amat L. and Fradera X., J. Math. Chem., 18 (1995) 237.

    Article  Google Scholar 

  25. Montgomery D. C. and Peck E. A., Introduction to Linear Regression Analysis (John Wiley, New York) 1992.

    MATH  Google Scholar 

  26. Allen D. M., Technometrics, 16 (1974) 125.

    Article  MathSciNet  Google Scholar 

  27. Audi G. and Wapstra A. H., Nucl. Phys. A, 595 (1995) 409. The experimental binding energy per nucleon can be downloaded from the Web Site: www.nndc.bnl.gov/nndscr/masses/MASS2EXP.MAS95.

    Article  ADS  Google Scholar 

  28. Wold S. and Eriksson L., in Chemometric Methods in Molecular Design (VCH Pub. Inc., New York) 1995.

    Google Scholar 

  29. Fisher R., in The Design of Experiments (Hafner Pub., New York) 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors of this paper have agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, D., Carbó-Dorca, R. Structure-property relationships in nuclei. Prediction of the binding energy per nucleon using a quantum similarity approach. Il Nuovo Cimento A (1971–1996) 111, 1311–1320 (1998). https://doi.org/10.1007/BF03545797

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03545797

Navigation