Skip to main content

Molecular Descriptors in QSPR/QSAR Modeling

  • Chapter
  • First Online:
QSPR/QSAR Analysis Using SMILES and Quasi-SMILES

Abstract

Molecular descriptors are mathematical representation of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. The molecular descriptors as the core feature-independent parameters used to predict biological activity or molecular property of compounds in the quantitative structure property/activity relationship (QSPR/QSAR) models. Over the years, more than 5000 molecular descriptors have been introduced and calculated using different software. In this chapter, the main classes of theoretical molecular descriptors including 0D, 1D, 2D, 3D, and 4D-descriptors are described. The most significant progress over the last few years in chemometrics, cheminformatics, and bioinformatics has led to new strategies for finding new molecular descriptors. The different approaches for deriving molecular descriptors here reviewed, and some of the new important molecular descriptors and their applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MoRSE:

3D-Molecular Representation of Structures Based on Electron Diffraction

ACE:

Angiotensin-Converting Enzymes

AFM:

Atomic Force Microscopy

AZI:

Augmented Zagreb Index

BET:

Brunauer, Emmett, and Teller

CORAL:

CORrelation And Logic

DHFR:

Dihydrofolate Reductase

DLS:

Dynamic Light Scattering

EM:

Electronic Microscopy

EDX:

Energy Dispersive X-ray Spectrometry

ESEM:

Environmental Scanning Electron Microscopy

FFF:

Field Flow Filtration

FMO:

Frontier Molecular Orbital Theory

HOMO:

Highest Occupied Molecular Orbital

WW:

Hyper-Wiener Index

ICPOES:

Inductively Coupled Plasma Emission Spectroscopy

ICP-MS:

Inductively Coupled Plasma Mass Spectrometry

LC:

Liquid Chromatography

LUMO:

Lowest Unoccupied Molecular Orbital

MW:

Molecular Weight

MVC:

Multivariate Characterization

PCA:

Principal Component Analyses

PPs:

Principal Properties

QSAR:

Quantitative Structure–Activity Relationship

QSPR:

Quantitative Structure–Property Relationship

SMILES:

Simplified Molecular Input Line Entry System

TMACC:

Topological Maximum Cross Correlation

TEM:

Transmission Electron Microscopy

References

  1. Rocke AJ (1981) Br J Hist Sci 14:27–57. https://doi.org/10.1017/S0007087400018276

  2. Kekulé A (858) Liebigsder Chemie JA 106:129–159. https://doi.org/10.1002/jlac.18581060202

  3. Brown AC, Fraser TR (1868) Eearth Environ Sci Trans Roy Soc 25:151–203. https://doi.org/10.1017/S0080456800028155

    Article  Google Scholar 

  4. Richardson B (1869) Med Times Gazzette (ii), pp 703–706

    Google Scholar 

  5. Körner W (1874) Gazz Chim It 4:242

    Google Scholar 

  6. Richet M (1893) Compt Rend Soc Biol (Paris) 45:775–776

    Google Scholar 

  7. Hammett LP (1937) J Am Chem Soc 59:96–103. https://doi.org/10.1021/ja01280a022

  8. Ghasemi J, Ahmadi S (2007) Ann Chim 97:69–83. DOI:https://doi.org/10.1002/adic.200690087

  9. Ahmadi S, Mardinia F, Azimi N, Qomi M, Balali E (2019) J Mol Struct 1181:305–311. https://doi.org/10.1016/j.molstruc.2018.12.089

  10. Ahmadi S, Ghanbari H, Lotfi S, Azimi N (2021) Mol Divers 25:87–97. https://doi.org/10.1007/s11030-019-10026-9

  11. Javidfar M, Ahmadi S (2020) SAR QSAR Environ Res 31:717–739. https://doi.org/10.1080/1062936X.2020.1806922

  12. Ahmadi S (2012) Macroheterocycles 5:23–31. https://doi.org/10.6060/mhc2012.110734a

  13. Ahmadi S, Babaee E (2014) J Incl Phenom Macro 79:141–149. https://doi.org/10.1007/s10847-013-0337-7

    Article  CAS  Google Scholar 

  14. Ahmadi S, Deligeorgiev T, Vasilev A, Kubista M (2012) Russ J Phys Chem A 86:1974–1981. https://doi.org/10.1134/S0036024412130201

    Article  CAS  Google Scholar 

  15. Ghasemi JB, Ahmadi S, Brown S (2011) Environ Chem Lett 9:87–96. https://doi.org/10.1007/s10311-009-0251-9

    Article  CAS  Google Scholar 

  16. Ahmadi S, Khazaei MR, Abdolmaleki A (2014) Med Chem Res 23:1148–1161. https://doi.org/10.1007/s00044-013-0716-z

    Article  CAS  Google Scholar 

  17. Ahmadi S, Habibpour E (2017) Anti-Cancer Agent Med Chem 17:552–565. https://doi.org/10.2174/1871520611009010001

    Article  CAS  Google Scholar 

  18. Ahmadi S (2012) J Incl Phenom Macro 74:57–66. https://doi.org/10.1007/s10847-010-9881-6

    Article  CAS  Google Scholar 

  19. Ghasemi JB, Ahmadi S, Ayati M (2010) Macroheterocycles 3:234–242. https://doi.org/10.6060/mhc2010.4.234

    Article  CAS  Google Scholar 

  20. Tropsha A, Wang S (2007) In: Bourne H, Horuk R, Kuhnke J, Michel H (eds) GPCRs: from deorphanization to lead structure identification. Ernst Schering Foundation symposium proceedings, vol 2006/2. Springer, Berlin, Heidelberg, pp 49–74. https://doi.org/10.1007/2789_2006_003

  21. Ahmadi S, Ganji S (2016) Curr Drug Discov Technol 13:232–253. https://doi.org/10.2174/1570163813666160725114241

    Article  CAS  PubMed  Google Scholar 

  22. Lotfi S, Ahmadi S, Kumar P (2021) J Mol Liq 338:116465. https://doi.org/10.1016/j.molliq.2021.116465

    Article  CAS  Google Scholar 

  23. Habibpour E, Ahmadi S (2017) Curr Comput-Aid Drug Des 13:143–159. https://doi.org/10.2174/1573409913666170124100810

    Article  CAS  Google Scholar 

  24. Lotfi S, Ahmadi S, Kumar P (2021) RSC Adv 11:33849–33857. https://doi.org/10.1039/D1RA06861J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Willett P, Barnard JM, Downs GM (1998) J Che Inf Comp Sci 38:983–996. https://doi.org/10.1021/ci9800211

    Article  CAS  Google Scholar 

  26. Suhachev D, Pivina T, Shlyapochnikov V, Petrov E, Palyulin V, Zefirov N (1993) Dokl RAN 328:50–57

    Google Scholar 

  27. Harary F (1971) Graph theory, 2nd printing. Addison-Wesley, Reading, MA

    Google Scholar 

  28. Roy K (2004) Mol Divers 8:321–323. https://doi.org/10.1023/b:modi.0000047519.35591.b7

    Article  CAS  PubMed  Google Scholar 

  29. Wiener H (1947) J Am Chem Soc 69:17–20. https://doi.org/10.1021/ja01193a005

    Article  CAS  PubMed  Google Scholar 

  30. Randić M (1993) Chem Phys Lett 211:478–483. https://doi.org/10.1016/0009-2614(93)87094-J

    Article  Google Scholar 

  31. Nikolić S, Trinajstić N, Randić M (2001) Chem Phys Lett 333:319–321. https://doi.org/10.1016/S0009-2614(00)01367-1

    Article  Google Scholar 

  32. Li X-h, Li Z-g, Hu M-l (2003) J Mol Graph Model 22:161–172. https://doi.org/10.1016/S1093-3263(03)00157-8

    Article  CAS  PubMed  Google Scholar 

  33. Randic M (1975) J Am Chem Soc 97:6609–6615. https://doi.org/10.1021/ja00856a001

    Article  CAS  Google Scholar 

  34. Kier LB, Hall LH (1986) In: Molecular connectivity in structure-activity analysis. Research studies. Wiley, Letchworth, Hertfordshire, England, New York, p 262. https://doi.org/10.1002/jps.2600760325

  35. Randić M (1991) J Mat Chem 7:155–168. https://doi.org/10.1007/BF01200821

    Article  Google Scholar 

  36. Randić M (2001) J Mol Graph Model 20:19–35. https://doi.org/10.1016/S1093-3263(01)00098-5

    Article  PubMed  Google Scholar 

  37. Kier L (1986) Acta Pharm Jugosl 36:171–188. https://doi.org/10.1002/med.2610070404

    Article  CAS  Google Scholar 

  38. Balaban AT (1982) Chem Phys Lett 89:399–404. https://doi.org/10.1016/0009-2614(82)80009-2

    Article  CAS  Google Scholar 

  39. Gutman I, Das KC (2004) MATCH Commun Math Comput Chem 50:83–92. https://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_83-92.pdf

  40. Furtula B, Graovac A, Vukičević D (2010) J Mat Chem 48:370–380. https://doi.org/10.1007/s10910-010-9677-3

    Article  CAS  Google Scholar 

  41. Hosoya H (1971) B Chem Soc Jpn 44:2332–2339. https://doi.org/10.1246/bcsj.44.2332

    Article  CAS  Google Scholar 

  42. Randić M, Zupan J (2001) J Chem Inf Comp Sci 41:550–560. https://doi.org/10.1021/ci000095o

    Article  CAS  Google Scholar 

  43. Moreau G, Broto P (1980) Nouv J Chim 4(6):359–360

    CAS  Google Scholar 

  44. Gutman I (1994) Graph Theory Notes NY 27(9):9–15

    Google Scholar 

  45. Melville JL, Hirst JD (2007) J Chem Inf Model 47:626–634. https://doi.org/10.1021/ci6004178

    Article  CAS  PubMed  Google Scholar 

  46. Spowage BM, Bruce CL, Hirst JD (2009) J Cheminform 1:1–13. https://doi.org/10.1186/1758-2946-1-22

    Article  CAS  Google Scholar 

  47. Ghose AK, Crippen GM (1986) J Comput Chem 7:565–577. https://doi.org/10.1002/jcc.540070419

    Article  CAS  Google Scholar 

  48. Arnott JA, Kumar R, Planey SL (2013) J Appl Biopharm Pharmacokinet 1:31–36. http://creativecommons.org/licenses/by-nc/3.0/

  49. Winiwarter S, Ax F, Lennernäs H, Hallberg A, Pettersson C, Karlén A (2003) J Mol Graph Model 21:273–287. https://doi.org/10.1016/S1093-3263(02)00163-8

    Article  CAS  PubMed  Google Scholar 

  50. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967. https://doi.org/10.1021/ja00226a005

    Article  CAS  PubMed  Google Scholar 

  51. Seel M, Turner DB, Willett P (1999) Quant Struct-Act Relat 18:245–252. https://doi.org/10.1002/(SICI)1521-3838

    Article  CAS  Google Scholar 

  52. Doweyko AM (1988) J Med Chem 31:1396–1406. https://doi.org/10.1021/jm00402a025

    Article  CAS  PubMed  Google Scholar 

  53. Kuz’min VE, Artemenko AG, Kovdienko NA, Tetko IV, Livingstone DJ (2000) J Mol Model 6:517–526. https://doi.org/10.1007/s0089400060517

  54. Todeschini R, Consonni V (2008) Handbook of molecular descriptors. Wiley, p 667. https://doi.org/10.1002/9783527613106

  55. Soltzberg LJ, Wilkins CL (1977) J Am Chem Soc 99:439–443. https://doi.org/10.1021/ja00444a021

    Article  CAS  Google Scholar 

  56. Wagener M, Sadowski J, Gasteiger J (1995) J Am Chem Soc 117:7769–7775. https://doi.org/10.1021/ja00134a023

    Article  CAS  Google Scholar 

  57. Vedani A, Dobler M (2000) In: Jucker E (ed) Progress in drug research, vol 55. Birkhäuser, Basel, pp 105–135. https://doi.org/10.1007/978-3-0348-8385-6_4

  58. Easton RE, Giesen DJ, Welch A, Cramer CJ, Truhlar DG (1996) Theor Chim Acta 93:281–301. https://doi.org/10.1007/BF01127507

    Article  CAS  Google Scholar 

  59. Kostal J, Voutchkova-Kostal A, Anastas PT, Zimmerman JB (2015) Proc Natl Acad Sci 112:6289–6294. https://doi.org/10.1073/pnas.1314991111

    Article  CAS  PubMed  Google Scholar 

  60. Lynch BJ, Truhlar DG (2004) Theor Chem Acc 111:335–344. https://doi.org/10.1007/s00214-003-0518-3

    Article  CAS  Google Scholar 

  61. Azimi A, Ahmadi S, Kumar A, Qomi M, Almasirad A (2022) Polycycl Aromat Comp 1–21. https://doi.org/10.1080/10406638.2022.2067194

  62. Cocchi M, Menziani MC, De Benedetti PG, Cruciani G (1992) Chemometr Intell Lab 14:209–224. https://doi.org/10.1016/0169-7439(92)80105-D

    Article  CAS  Google Scholar 

  63. Franke R (1984) Pharm Libr, vol 7. Elsevier, Amsterdam, p 412

    Google Scholar 

  64. Bodor N, Gabanyi Z, Wong CK (1989) J Am Chem Soc 111:3783–3786. https://doi.org/10.1021/ja00193a003

    Article  CAS  Google Scholar 

  65. Buydens L, Massart DL, Geerlings P (1983) Anal Chem 55:738–744. https://doi.org/10.1021/ac00255a034

    Article  CAS  Google Scholar 

  66. Klopman G, Iroff LD (1981) J Comput Chem 2:157–160. https://doi.org/10.1002/jcc.540020204

    Article  CAS  Google Scholar 

  67. Zhou Z, Parr RG (1990) J Am Chem Soc 112:5720–5724. https://doi.org/10.1021/ja00171a007

    Article  CAS  Google Scholar 

  68. Ośmiałowski K, Halkiewicz J, Radecki A, Kaliszan R (1985) J Chromatogr A 346:53–60. https://doi.org/10.1016/S0021-9673(00)90493-X

    Article  Google Scholar 

  69. Fukui K (1970) In: Orientation and Stereoselection. Fortschritte der Chemischen Forschung, vol 15/1. Springer, Berlin, Heidelberg, pp 1–85. https://doi.org/10.1007/BFb0051113

  70. Sklenar H, Jäger J (1979) Int J Quantum Chem 16:467–484. https://doi.org/10.1002/qua.560160306

    Article  CAS  Google Scholar 

  71. Tuppurainen K, Lötjönen S, Laatikainen R, Vartiainen T, Maran U, Strandberg M, Tamm T (1991) Mutat Res Fundam Mol Mech 247:97–102. https://doi.org/10.1016/0027-5107(91)90037-O

    Article  CAS  Google Scholar 

  72. Becker H (1978) J Prakt Chem 320:879–880. https://doi.org/10.1002/prac.19783200525

    Article  Google Scholar 

  73. Lewis D, Ioannides C, Parke D (1994) Xenobiotica 24:401–408. https://doi.org/10.3109/00498259409043243

    Article  CAS  PubMed  Google Scholar 

  74. Pearson RG (1989) J Org Chem 54:1423–1430. https://doi.org/10.1021/jo00267a034

    Article  CAS  Google Scholar 

  75. Prabhakar YS (1991) Drug Des Deliv 7:227–239

    CAS  PubMed  Google Scholar 

  76. Kurtz HA, Stewart JJ, Dieter KM (1990) J Comput Chem 11:82–87. https://doi.org/10.1002/jcc.540110110

    Article  CAS  Google Scholar 

  77. Cammarata A (1967) J Med Chem 10:525–527. https://doi.org/10.1021/jm00316a004

    Article  CAS  PubMed  Google Scholar 

  78. Leo A, Hansch C, Church C (1969) J Med Chem 12:766–771. https://doi.org/10.1021/jm00305a010

    Article  CAS  PubMed  Google Scholar 

  79. Hansch C, Coats E (1970) J Pharm Sci 59:731–743. https://doi.org/10.1002/jps.2600590602

    Article  CAS  PubMed  Google Scholar 

  80. Lewis DF (1987) J Comput Chem 8:1084–1089. https://doi.org/10.1002/jcc.540080803

    Article  CAS  Google Scholar 

  81. Cartier A, Rivail J-L (1987) Chemometr Intell Lab 1:335–347. https://doi.org/10.1016/0169-7439(87)80039-4

    Article  CAS  Google Scholar 

  82. Gaudio AC, Korolkovas A, Takahata Y (1994) J Pharm Sci 83:1110–1115. https://doi.org/10.1002/jps.2600830809

    Article  CAS  PubMed  Google Scholar 

  83. Grunenberg J, Herges R (1995) J Chem Inf Comp Sci 35:905–911. https://doi.org/10.1021/ci00027a018

    Article  CAS  Google Scholar 

  84. Kikuchi O (1987) Quant Struct-Act Relat 6:179–184. https://doi.org/10.1002/qsar.19870060406

    Article  CAS  Google Scholar 

  85. Grüber C, Buss V (1989) Chemosphere 19:1595–1609. https://doi.org/10.1016/0045-6535(89)90503-1

    Article  Google Scholar 

  86. Saura-Calixto F, Garcia-Raso A, Raso M (1984) J Chromatogr Sci 22:22–26. https://doi.org/10.1093/chromsci/22.1.22

    Article  CAS  Google Scholar 

  87. Shusterman A (1991) ChemTech 21(10):624–627

    CAS  Google Scholar 

  88. Brusick DJ, Vogel EW, Nivard MJ, Klopman G, Rosenkranz HS, Enslein K, Gombar VK, Blake BW, Debnath AK, Shusterman AJ, de Compadre RL (1994) Mutat Res 305:321–323

    Article  Google Scholar 

  89. Trapani G, Carotti A, Franco M, Latrofa A, Genchi G, Liso G (1993) Eur J Med Chem 28:13–21. https://doi.org/10.1016/0223-5234(93)90074-O

    Article  CAS  Google Scholar 

  90. Ebert C, Linda P, Alunni S, Clementi S, Cruciani G, Santini S (1990) Gazz Chim Ital 120:29

    CAS  Google Scholar 

  91. Skagerberg B, Bonelli D, Clementi S, Cruciani G, Ebert C (1989) Quant Struct-Act Relat 8:32–38. https://doi.org/10.1002/qsar.19890080105

    Article  CAS  Google Scholar 

  92. Flynn GL (1980) J Pharm Sci 69:1109–1109. https://doi.org/10.1002/jps.2600690938

    Article  Google Scholar 

  93. Taft RW, Topsom R (1987) Prog Phys Org Chem 16:1–83

    Google Scholar 

  94. Ewing DF (1979) Org Magn Reson 12:499–524. https://doi.org/10.1002/mrc.1270120902

    Article  CAS  Google Scholar 

  95. Waterbeemd H Van de, Testa B (1987) In: Advances in drug research, vol 16. Academic, London, pp 87–227

    Google Scholar 

  96. Yang GZ, Lien EJ, Guo ZR (1986) Quant Struct-Act Relat 5:12–18. https://doi.org/10.1002/qsar.19860050104

    Article  Google Scholar 

  97. Kim KH, Martin YC (1991). In: Silipo C, Vittoria A (eds) QSAR: rational approaches to the design of bioactive compounds. Elsevier, Amsterdam, pp 151–154

    Google Scholar 

  98. Sjöström M, Wold S (1985) J Mol Evol 22:272–277. https://doi.org/10.1007/BF02099756

    Article  PubMed  Google Scholar 

  99. Sjöström M, Wold S, Wieslander A, Rilfors L (1987) EMBO J 6:823–831. https://doi.org/10.1002/j.1460-2075.1987.tb04825.x

    Article  PubMed  PubMed Central  Google Scholar 

  100. Carlson R, Lundstedt T, Albano C (1985) Acta Chem Scand B 39:79–91. https://doi.org/10.3891/acta.chem.scand.39b-0079

    Article  Google Scholar 

  101. Carlson R, Lundstedt T, Nordahl Å, Prochazka M (1986) Acta Chem Scand B 40:522–533. https://doi.org/10.3891/acta.chem.scand.40b-0522

    Article  Google Scholar 

  102. Lundstedt T, Carlson R, Shabana R (1987) Acta Chem Scand B 41:157–163. https://doi.org/10.3891/acta.chem.scand.41b-0157

    Article  Google Scholar 

  103. Carlson R, Prochazka M, Lundstedt T (1988) Acta Chem Scand B Org Chem Biochem 42:145–156. https://doi.org/10.3891/acta.chem.scand.42b-0145

    Article  Google Scholar 

  104. Hellberg S, Sjostrom M, Skagerberg B, Wikstrom C, Wold S (1987) Acta Pharm Jugsl 37:53–65. https://doi.org/10.1021/jm00390a003

    Article  CAS  Google Scholar 

  105. Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ (1973) J Med Chem 16:1207–1216. https://doi.org/10.1021/jm00269a003

    Article  CAS  PubMed  Google Scholar 

  106. Verloop A, Hoogenstraaten W, Tipker J (1976) In: Ariens EJ (ed) Drug design. Academic, New York

    Google Scholar 

  107. Rybińska-Fryca A, Mikolajczyk A, Puzyn T (2020) Nanoscale 12:20669–20676. https://doi.org/10.1039/D0NR05220E

    Article  PubMed  Google Scholar 

  108. Richarz A-N, Avramopoulos A, Benfenati E, Gajewicz A, Golbamaki Bakhtyari N, Leonis G, Marchese Robinson RL, Papadopoulos MG, Cronin MTD, Puzyn T (2017) In: Tran L, Bañares M, Rallo R (eds) Modelling the toxicity of nanoparticles. Advances in experimental medicine and biology, vol 947. Springer, Cham, pp 303–324. https://doi.org/10.1007/978-3-319-47754-1_10

  109. Puzyn T, Gajewicz A, Leszczynska D, Leszczynski J (2010) In: Puzyn T, Leszczynski J, Cronin M (eds) Recent advances in QSAR studies. Challenges and advances in computational chemistry and physics, vol 8. Springer, Dordrecht, pp 383–409. https://doi.org/10.1007/978-1-4020-9783-6_14

  110. Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Ecotoxicology 17:344–361. https://doi.org/10.1007/s10646-008-0225-x

    Article  CAS  PubMed  Google Scholar 

  111. Ahmadi S, Lotfi S, Kumar P (2020) SAR QSAR Environ Res 31:935–950. https://doi.org/10.1080/1062936X.2020.1842495

    Article  CAS  PubMed  Google Scholar 

  112. Ghiasi T, Ahmadi S, Ahmadi E, Talei Bavil Olyai M, Khodadadi Z (2021) SAR QSAR Environ Res 32:495–520. https://doi.org/10.1080/1062936X.2021.1925344

  113. Ahmadi S, Lotfi S, Afshari S, Kumar P, Ghasemi E (2021) SAR QSAR Environ Res 32:1013–1031. https://doi.org/10.1080/1062936X.2021.2003429

    Article  CAS  PubMed  Google Scholar 

  114. Ahmadi S, Lotfi S, Kumar P (2022) Toxicol Mech Method 32:302–312. https://doi.org/10.1080/15376516.2021.2000686

    Article  CAS  Google Scholar 

  115. Ahmadi S, Moradi Z, Kumar A, Almasirad A (2022) J Recept Signal Transduct 42:361–372. https://doi.org/10.1080/10799893.2021.1957932

    Article  CAS  Google Scholar 

  116. Lotfi S, Ahmadi S, Kumar P (2022) RSC Adv 12:24988–24997. https://doi.org/10.1039/D2RA03936B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weininger D (1988) J Chem Inf Comp Sci 28:31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  118. Weininger D, Weininger A, Weininger JL (1989) J Chem Inf Comp Sci 29:97–101. https://doi.org/10.1021/ci00062a008

    Article  CAS  Google Scholar 

  119. Pinheiro GA, Mucelini J, Soares MD, Prati RC, Da Silva JL, Quiles MG (2020) J Phys Chem A 124:9854–9866. https://doi.org/10.1021/acs.jpca.0c05969

    Article  CAS  PubMed  Google Scholar 

  120. Lotfi S, Ahmadi S, Zohrabi P (2020) Struct Chem 31:2257–2270. https://doi.org/10.1007/s11224-020-01568-y

    Article  CAS  Google Scholar 

  121. Toropov A, Toropova A, Martyanov S, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) Chemometr Intell Lab 109:94–100. https://doi.org/10.1016/j.chemolab.2011.07.008

    Article  CAS  Google Scholar 

  122. Ahmadi S, Mehrabi M, Rezaei S, Mardafkan N (2019) J Mol Struct 1191:165–174. https://doi.org/10.1016/j.molstruc.2019.04.103

    Article  CAS  Google Scholar 

  123. Ahmadi S, Akbari A (2018) SAR QSAR Environ Res 29:895–909. https://doi.org/10.1080/1062936X.2018.1526821

    Article  CAS  PubMed  Google Scholar 

  124. Heidari A, Fatemi MH (2017) J Chin Chem Soc-Taip 64:289–295. https://doi.org/10.1002/jccs.201600761

    Article  CAS  Google Scholar 

  125. Kumar P, Kumar A (2020) SAR QSAR Environ Res 31:697–715. https://doi.org/10.1080/1062936X.2020.1806105

    Article  CAS  PubMed  Google Scholar 

  126. Ahmadi S (2020) Chemosphere 242:125192. https://doi.org/10.1016/j.chemosphere.2019.125192

    Article  CAS  PubMed  Google Scholar 

  127. Ahmadi S, Toropova AP, Toropov AA (2020) Nanotoxicology 14:1118–1126. https://doi.org/10.1080/17435390.2020.1808252

    Article  CAS  PubMed  Google Scholar 

  128. Ahmadi S, Ketabi S, Qomi M (2022) New J Chem 46:8827–8837. https://doi.org/10.1039/D2NJ00596D

    Article  CAS  Google Scholar 

  129. Ahmadi S, Aghabeygi S, Farahmandjou M, Azimi N (2021) Struct Chem 32:1893–1905. https://doi.org/10.1007/s11224-021-01748-4

    Article  CAS  Google Scholar 

  130. Toropov AA, Toropova AP (2019) Sci Total Environ 681:102–109. https://doi.org/10.1016/j.scitotenv.2019.05.114

    Article  CAS  PubMed  Google Scholar 

  131. Toropov AA, Kjeldsen F, Toropova AP (2022) Chemosphere 135086. https://doi.org/10.1016/j.chemosphere.2022.135086

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Ahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmadi, S., Ketabi, S., Jebeli Javan, M. (2023). Molecular Descriptors in QSPR/QSAR Modeling. In: Toropova, A.P., Toropov, A.A. (eds) QSPR/QSAR Analysis Using SMILES and Quasi-SMILES. Challenges and Advances in Computational Chemistry and Physics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-28401-4_2

Download citation

Publish with us

Policies and ethics