Skip to main content
Log in

δ Opioidmimetic Antagonists: Prototypes for Designing a New Generation of Ultraselective Opioid Peptides

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Tyr-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) and Tyr-Tic-Ala were the first peptides with δ opioid antagonist activity lacking Phe, considered essential for opioid activity based on the N-terminal tripeptide sequence (Tyr-d-Xaa-Phe) of amphibian skin opioids. Analogs were then designed to restrain the rotational flexibility of Tyr by the substitution of 2,6-dimethyl-l-tyrosine (Dmt).

Materials and Methods

Tyr and Dmt peptides were synthesized by solid phase and solution methods using Fmoc technology or condensing Boc-Dmt-OH or Boc-Tyr(But)-OH with H-l-Tic-OBut or H-d-Tic-OBut, respectively. Peptides were purified (>99%) by HPLC and characteristics determined by 1H-NMR, FAB-MS, melting point, TLC, and amino acid analyses.

Results

H-Dmt-Tic-OH had high affinity (Kiδ = 0.022 nM) and extraordinary selectivity (Kiμ/Kiδ = 150,000); H-Dmt-Tic-Ala-OH had a Kiδ = 0.29 nM and δ selectivity = 20,000. Affinity and selectivity increased 8700- and 1000-fold relative to H-Tyr-Tic-OH, respectively. H-Dmt-Tic-OH and H-Dmt-Tic-NH2 fitted one-site receptor binding models (η = 0.939−0.987), while H-Dmt-Tic-ol, H-Dmt-Tic-Ala-OH and H-Dmt-Tic-Ala-NH2 best fitted two-site models (η = 0.708−0.801, F 18.9−26.0, p < 0.0001). Amidation increased μ affinity by 10- to 100-fold and acted synergistically with d-Tic2 to reverse selectivity (δ μ). Dmt-Tic di- and tripeptides exhibited δ antagonist bioactivity (Ke = 4−66 nM) with mouse vas deferens and lacked agonist μ activity (> 10 µM) in guinea-pig ileum preparations. Dmt-Tic analogs weakly interacted with κ receptors in the 1 to >20 µM range.

Conclusions

Dmt-Tic opioidmimetic peptides represent a highly potent class of opioid peptide antagonists with greater potency than the nonopioid δ antagonist naltrindole and have potential application as clinical and therapeutic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hansen PE, Morgan BA. (1984) Structure-activity relationships in enkephalin peptides. In: Udenfriend S, Meienhofer J (eds). The Peptides. Academic Press, Orlando. Vol. 6, pp. 269–321.

    Google Scholar 

  2. Hruby VJ, Gehrig CA. (1989) Recent developments in the design of receptor specific opioid peptides. Med. Res. Rev. 9: 343–401.

    Article  CAS  PubMed  Google Scholar 

  3. Erspamer V. (1992) The opioid peptides of the amphibian skin. Int. J. Dev. Neurosci. 10: 3–30.

    Article  CAS  PubMed  Google Scholar 

  4. Sagan S, Amiche M, Delfour A, Camus A, Mor A, Nicolas P. (1989) Differential contribution of C-terminal regions of dermorphin and dermenkephalin to opioid-sites selection and binding potency. Biochem. Biophys. Res. Commun. 163: 726–732.

    Article  CAS  PubMed  Google Scholar 

  5. Sagan S, Amiche M, Delfour A, Mor A, Camus A, Nicolas P. (1989) Molecular determinants of receptor affinity and selectivity of the natural δ-opioid agonist, dermenkephalin. J. Biol. Chem. 264: 17100–17106.

    PubMed  CAS  Google Scholar 

  6. Balboni G, Marastoni M, Picone D, et al. (1990) New features of the δ opioid receptor: conformational properties of deltorphin I analogues. Biochem. Biophys. Res. Commun. 169: 617–622.

    Article  CAS  PubMed  Google Scholar 

  7. Lazarus LH, Salvadori S, Tomatis R, Wilson WE. (1991) Opioid receptor selectivity reversal in deltorphin tetrapeptide analogues. Biochem. Biophys. Res. Commun. 178: 110–115.

    Article  CAS  PubMed  Google Scholar 

  8. Melchiorri P, Negri L, Falconieri Erspamer G, et al. (1991) Structure-activity relationships of the δ-opioid-selective agonists, deltorphins. Eur. J. Pharmacol. 195: 201–207.

    Article  CAS  PubMed  Google Scholar 

  9. Marastoni M, Tomatis R, Lazarus LH, Salvadori S. (1991) On the degradation of deltorphin peptides by plasma and brain homogenate. Farmaco 46: 1273–1279.

    PubMed  CAS  Google Scholar 

  10. Sagan S, Charpentier S, Delfour A, Amiche M, Nicolas P. (1992) The aspartic acid in deltorphin I and dermenkephalin promotes targeting to δ-opioid receptor independently of receptor binding. Biochem. Biophys. Res. Commun. 187: 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  11. Schiller PW, Nguyen TM-D, Chung NN, Lemieux C. (1989) Dermorphin analogues carrying an increased positive net charge in their “message” domain display extremely high μ opioid receptor selectivity. J. Med. Chem. 32: 698–703.

    Article  CAS  PubMed  Google Scholar 

  12. Schiller PW, Weltrowska G, Nguyen TM-D, et al. (1991) Conformational restriction of the phenylalanine residue in a cyclic opioid peptides analogue: Effects on receptor selectivity and stereospecificity. J. Med. Chem. 34: 3128–3132.

    Article  Google Scholar 

  13. Mosberg HI, Kroona HB. (1992) Incorporation of a novel conformationally restricted tyrosine analog into a cyclic, δ opioid receptor selective tetrapeptide (JOM-13) enhances δ receptor binding affinity and selectivity. J. Med. Chem. 35: 4498–4500.

    Article  CAS  PubMed  Google Scholar 

  14. Lazarus LH, Salvadori S, Balboni G, Tomatis R, Wilson WE. (1992) Stereospecificity of the amino acid side chains in deltorphin defines binding to opioid receptors. J. Med. Chem. 35:1222–1227.

    Article  CAS  PubMed  Google Scholar 

  15. Salvadori S, Bryant SD, Bianchi C, Balboni G, Attila M, Lazarus LH. (1993) Phe3-substituted analogues of deltorphin C. Spatial conformation and topography of the aromatic ring in peptide recognition by δ opioid receptors. J. Med. Chem. 36: 3748–3756.

    Article  CAS  PubMed  Google Scholar 

  16. Schiller PW, Nguyen TM-D, Weltrowska G, et al. (1992) Differential stereochemical requirements of μ vs. δ opioid receptors for ligand binding and signal transduction: Development of a class of potent and highly δ-selective peptide antagonists. Proc. Natl. Acad. Sci. 89: 11871–11875.

    Article  CAS  PubMed  Google Scholar 

  17. Schiller PW, Weltroska G, Nguyen TM-D, Wilkes BC, Chung NN, Lemieux C. (1993) TIPP [ψ]: A highly potent and stable pseudopeptide δ opioid receptor antagonist with extraordinary δ selectivity. J. Med. Chem. 36: 3182–3187.

    Article  CAS  PubMed  Google Scholar 

  18. Temussi PA, Salvadori S, Amodeo P, et al. (1994) Selective opioid dipeptides. Biochem. Biophys. Res. Commun. 198: 933–939.

    Article  CAS  PubMed  Google Scholar 

  19. Chandrakumar NS, Stapelfeld A, Beardsley PM, et al. (1992) Analogs of the δ opioid receptor selective cyclic peptide [2-d-penicillamine, 5-d-penicillamine]-enkephalin: 2′,6′-dimethylty rosine and Gly3-Phe4 amide bond isostere substitutions. J. Med. Chem. 35: 2928–2938.

    Article  CAS  PubMed  Google Scholar 

  20. Pizele BS, Hamilton RW, Kudla KD, et al. (1992) Enkephalin analogs as systemically active antinociceptive agents: O- and N-alkylated derivatives of the dipeptide amide 2,6-dimethyl-l-tyrosyl-N-(3-phenylpropyl)-d-alaninamide. J. Med. Chem. 37: 888–896.

    Article  Google Scholar 

  21. Hansen Jr DW, Stapelfeld A, Savage MA, et al. (1992) Systemic analgesic activity and δ-opioid selectivity in [2,6-dimethyl-Tyr1,D-Pen2,D-Pen5]enkephalin. J. Med. Chem. 35: 684–687.

    Article  CAS  PubMed  Google Scholar 

  22. Qian X, Kōvér KE, Shenderovich MD, et al. (1994) Newly discovered stereochemical requirements in the side-chain conformation of δ opioid agonists for recognizing opioid δ receptors. J. Med. Chem. 37: 1746–1757.

    Article  CAS  PubMed  Google Scholar 

  23. Dygos JH, Yonan EE, Scaros MG, et al. (1992) A convenient asymmetric synthesis of the unnatural amino acid 2,6-dimethyl-l-tyrosine. Synthesis 8: 741–743.

    Article  Google Scholar 

  24. Chandrakumar NS, Yonan PK, Stapelfeld A, et al. (1992) Preparation and opioid activity of analogues of the analgesic dipeptide, 2,6-dimethyl-l-tyrosyl-N-(3-phenylpropyl)-d-alaninamide. J. Med. Chem. 35: 223–233.

    Article  CAS  PubMed  Google Scholar 

  25. Castopanagiotis AA, Preston J, Weinstein B. (1966) Amino acids and peptides, V. Synthesis of the C-terminal tripeptide sequence (A27–A29) of glucagon. J. Org. Chem. 31: 3398–3400.

    Article  Google Scholar 

  26. Yamaguchi R, Hamasaki T, Sasaki T, et al. (1993) A highly effective one-pot bicycloannulation methodology for the synthesis of berban and yohimban systems based on organation-mediated three-component coupling (N-acylative pentadienylation of C = N bonds). J. Org. Chem. 58: 1136–1143.

    Article  CAS  Google Scholar 

  27. Marsden BJ, Nguyen TM-D, Schiller PW. (1993) Spontaneous degradation via diketopiperazine formation of peptides containing a tetrahydroisoquinoline-3-carboxylic acid residue in the 2-position of the peptide sequence. Int. J. Pept. Prot. Res. 41: 313–316.

    Article  CAS  Google Scholar 

  28. Lazarus LH, Wilson WE, de Castiglione R, Guglietta A. (1989) Highly selective δ-opioid receptor peptide from preprodermorphin gene sequence. J. Biol. Chem. 264: 3047–3050.

    PubMed  CAS  Google Scholar 

  29. Corbett AD, Paterson SJ, McKnight AT, Magnan J, Kosterlitz HW. (1982) Dynorphin1,8 and dynorphin1–9 are ligands for the κ subtype of opiate receptor. Nature 299: 79–81.

    Article  CAS  PubMed  Google Scholar 

  30. Standifer KM, Cheng J, Brooks AI, et al. (1994) Biochemical and pharmacological characterization of mu, delta and kappa3 opioid receptors expressed in BE(2)-C neuroblastoma cells. J. Pharmacol. Exp. Ther. 270: 1246–1255.

    PubMed  CAS  Google Scholar 

  31. Webster JL, Polgar WE, Brandt SR, et al. (1993) Comparison of κ2-opioid receptors in guinea pig brain and guinea pig ileum membranes. Eur. J. Pharmacol. 231: 251–258.

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez FD, Bardaji E, Traynor JR. (1992) Differential effects of Mg2+ and other divalent cations on the binding of trititated opioid ligands. J. Neurochem. 59: 467–472.

    Article  CAS  PubMed  Google Scholar 

  33. Synder KR, Story SC, Heidt ME, et al. (1992) Effect of modification of the basic residues of dynorphin A-(1-13) amide on κ opioid receptor selectivity and opioid activity. J. Med. Chem. 35: 4330–4333.

    Article  Google Scholar 

  34. Cheng YC, Prusoff WH. (1973) Relationships between the inhibition constant (Ki) and the concentration of inhibition which cause 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22: 3099–3108.

    Article  CAS  PubMed  Google Scholar 

  35. Attila M, Salvadori S, Balboni G, Bryant SD, Lazarus LH. (1993) Synthesis and receptor binding analysis of dermorphin hepta, hexa- and pentapeptide analogues. Evidence for one- and two-site binding models for the μ-opioid receptor. Int. J. Peptide Prot. Res. 42: 550–559.

    Article  CAS  Google Scholar 

  36. Bryant SD, Attila M, Salvadori S, Guerrini R, Lazarus LH. (1994) Molecular dynamics conformations of deltorphin analogues advocate δ opioid binding site models. Peptide Res. 7: 175–184.

    CAS  Google Scholar 

  37. Kosterlitz HW, Lees GM, Wallis DI, Watt AJ. (1968) Non-specific inhibitory effects of morphine-like drugs on transmission in the superior cervical ganglion and guinea-pig isolated ileum. Br. J. Pharmacol. 34: 691P–692P.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Schild HO. (1947) pA, a new scale for the measurement of drug action. Br. J. Pharmacol. 2: 189–206.

    CAS  Google Scholar 

  39. Collin E, Cesselin F. (1991) Neurobiological mechanism of opioid tolerance and dependence. Clin. Neuropharmacol. 14: 465–488.

    Article  CAS  PubMed  Google Scholar 

  40. Lazarus LH, Salvadori S, Santagada V, Tornatis R, Wilson WE. (1991) Function of negative charge in the “address domain” of deltorphins. J. Med. Chem. 34: 1350–1359.

    Article  CAS  PubMed  Google Scholar 

  41. Charpentier S, Sagan S, Delfour A, Nicolas P. (1991) Dermenkephalin and deltorphin I reveal similarities within ligand-binding domains of μ- and δ-opioid receptors and an additional address subsite on the δ-receptors. Biochem. Biophys. Res. Commun. 179: 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  42. Lazarus LH, Salvadori S, Grieco P, Wilson WE, Tomatis R. (1992) Unique sequence in deltorphin C confers structural requirements for δ opioid receptor selectivity. Eur. J. Med. Chem. 27: 791–797.

    Article  CAS  Google Scholar 

  43. Lazarus LH, Salvadori S, Attila M, et al. (1993) Interaction of deltorphin with opioid receptors: molecular determinants for affinity and selectivity. Peptides 14: 21–28.

    Article  CAS  PubMed  Google Scholar 

  44. Portoghese PS. (1989) Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol. Sci. 10: 230–235.

    Article  CAS  PubMed  Google Scholar 

  45. Hammond DL, Stapelfeld A, Drower EJ, Savage MA, Tam L, Mazur RH. (1994) Antinociception produced by oral, subcutaneous or intrathecal administration of SC-39566, an opioid dipeptide. J. Pharmacol. Exp. Ther. 268: 607–615.

    PubMed  CAS  Google Scholar 

  46. Schwyzer R. (1986) Molecular mechanism of opioid receptor selection. Biochemistry 25: 6335–6342.

    Article  CAS  PubMed  Google Scholar 

  47. Wollemann M, Benyhe S, Simon J. (1993) The kappa-opioid receptor: Evidence for the different subtypes. Life Sci. 52: 599–611.

    Article  CAS  PubMed  Google Scholar 

  48. Amodeo P, Motta A, Tancredi T, et al. (1992) Solution structure of deltorphin I at 265 K: A quantitative NMR study. Peptide Res. 4: 48–55.

    Google Scholar 

  49. Castiglione-Morelli MA, Lelj F, Pastore A, et al. (1987) A 500-MHz proton nuclear magnetic resonance study of mu opioid peptides in a simulated receptor environment. J. Med. Chem. 37: 2067–2073.

    Article  Google Scholar 

  50. Tourwé D, Verschueren D, Van Binst G, Davis P, Porreca F, Hruby VJ. (1992) Dermorphin sequence with high δ-affinity by fixing the Phe side chain to trans at χ1. Bioorg. Med. Chem. Lett. 2: 1305–1308.

    Article  Google Scholar 

  51. Schiller PW, Weltrowska G, Nguyen T M-D, Wilkes BC, Chung NN, Lemieux C. (1992) Conformationally restricted deltorphin analogues. J. Med. Chem. 35: 3956–3961.

    Article  CAS  PubMed  Google Scholar 

  52. Portoghese PS. (1992) The role of concepts in structure-activity relationship studies of opioid ligands. J. Med. Chem. 35: 1927–1937.

    Article  CAS  PubMed  Google Scholar 

  53. Portoghese PS, Sultana M, Takemori AE. (1988) Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur. J. Pharmacol. 146: 185–186.

    Article  CAS  PubMed  Google Scholar 

  54. Takemori AE, Sultana M, Nagase H, Portoghese PS. (1992) Agonist and antagonist activities of ligands derived from naltrexone and oxymorphone. Life Sci. 50: 1491–1495.

    Article  CAS  PubMed  Google Scholar 

  55. Tancredi T, Salvadori S, Amodeo P, et al. Conversion of enkephalin and dermorphin into δ-selective opioid antagonists by single-residue substitution. (1994) Eur. J. Biochem. 224: 241–247.

    Article  CAS  PubMed  Google Scholar 

  56. Terenius L. (1976) Somatostatin and ACTH are peptides with partial antagonist-like selectivity for opiate receptors. Eur. J. Pharmacol. 38: 211–213.

    Article  CAS  PubMed  Google Scholar 

  57. Kazmierski W, Wire SW, Lui GK, et al. (1988) Design and synthesis of somatostatin analogues with topographical properties that lead to highly potent and specific mu opioid receptor antagonists with greatly reduced binding at somatostatin receptors. J. Med. Chem. 31: 249–253.

    Article  Google Scholar 

  58. Standifer KM, Chien C-C, Wahlestedt C, Brown GP, Pasternak GW. (1994) Selective loss of δ opioid analgesia and binding by antisense oligodeoxynucleotides to a δ opioid receptor. Neuron 12: 805–810.

    Article  CAS  PubMed  Google Scholar 

  59. Bilsky EJ, Bernstein RN, Pasternak GW, et al. (1994) Selective inhibition of [d-Ala2, Glu4] deltorphin antinociception by supraspinal, but not spinal, administration of an antisense oligodeoxynucleotide to an opioid delta receptor. Life Sci. 55: PL37–PL43.

    Article  CAS  PubMed  Google Scholar 

  60. Szabadi E. (1977) A model of two functionally antagonistic receptor populations activated by the same agent. J. Theor. Biol. 69: 101–112.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. J. H. Dygos (G. D. Searle and Co.) for generously providing us with 2′,6′-dimethyl-l-tyrosine. We thank Dr. R. Anacardio, Dompé SpA L’Aquila-Italy for the FAB-mass spectroscopic determinations. We appreciate the part-time assistance of K. Jefferies and T. McElwee, and the consistent library support by S. Fuller, R. J. Hester, E. M. Leadem, and F. T. Lyndon. We are grateful to Dr. C. Gruppi at Morgan & Finnegan, Attorneys at Law, New York, NY, for studiously preparing and submitting our data for a patent application, Serial Number 08/347.531, through the aegis of the National Institutes of Health Office of Technology Transfer. S. Salvadori was supported in part by grants from CNR Progetto Finalizzato Chimica Fine e Secondaria II and Murst.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvadori, S., Attila, M., Balboni, G. et al. δ Opioidmimetic Antagonists: Prototypes for Designing a New Generation of Ultraselective Opioid Peptides. Mol Med 1, 678–689 (1995). https://doi.org/10.1007/BF03401608

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401608

Navigation