Principle of Dissolution and Primitive Reflexes in AD HD

Abstract

According to current findings, in the history of neurology proposed by Hughlings Jackson, certain later developed functions during ontogenesis of the central nervous system (CNS) tend to replace the older ones. In this context, recent and historical findings suggest that certain later developed cognitive and motor functions during brain ontogenesis related to higher levels of coordination tend to replace the older ones and their persistence is linked to various neuropsychiatric disorders. Particularly important functional disturbances in ADHD developed early in life likely linked to dissolution process are balance deficits linked to dysfunctions of higher levels of coordination related to neurophysiological and mental functions that typically occur in ADHD. In this context, recent data suggest that one of the important aspects of normal development that may play a role in ADHD is suppression of the so-called primitive reflexes. Taken together these data suggest that ADHD symptoms may present a compensatory process related to interference of more primitive neural mechanism, as related to primitive reflexes, with higher levels of brain functions linked to coordination and balance due to insufficiently developed cognitive and motor integration.

References

  1. Allen, M.C., Capute A.J. (1986). The evolution of primitive reflexes in extremely premature infants. Pediatric Research, 20, 1284–9.

    Article  PubMed  Google Scholar 

  2. Andermann, A.,. (1997). Hughlings Jackson’s deductive science of the nervous system: a product of his thought collective and formative years. N eurology, 48, 471–81.

    Google Scholar 

  3. Arnsten, A.F. (2009). Toward a new understanding of attention -deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs, 23 (Suppl 1) 33–41.

    Article  PubMed  Google Scholar 

  4. Baillieux, H., De Smet, H.J., Paquier, P.F., De Deyn, P.P., & Marien, P. (2008). Cerebellar neurocognition: insights into the bottom of the brain. Clinical Neurology and Neurosurgery, 110(8), 763–73.

    Article  Google Scholar 

  5. Berquin, P.C., Giedd, J.N., Jacobsen, L.K., Hamburger, S.D., Krain, A.L., Rapoport, J.L., Castellanos, F.X. (1998). Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology, 50(4), 1087–93.

    Article  Google Scholar 

  6. Buderath, P., Gärtner, K., Frings, M., Christiansen, H., Schoch, B., Konczak, J., Gizewski, E.R., Hebebrand, J., & Timmann, D. (2009). Postural and gait performance in children with attention deficit/ hyperactivity disorder. Gait & Posture, 29(2), 249–54.

    Article  Google Scholar 

  7. Capute, A.J., & Accardo, P.J. (1991). Developmental disabilities in infancy and childhood. Baltimore, MD: Paul Brooks.

    Google Scholar 

  8. D’Agati, E., Casarelli, L., Pitzianti, M.B., & Pasini, A. (2010). Overflow movements and white matter abnormalities in ADHD. Progress in Neuropsychopharmacol & Biological Psychiatry, 34(3), 441–5.

    Article  Google Scholar 

  9. Ellenberger, H.F. (1970). The Discovery of the Unconscious: The History and Evolution of Dynamic Psychiatry. New York: Basic.

    Google Scholar 

  10. Ellis, M.D., Drogos, J., Carmona, C., Keller, T., & Dewald, J.P. (2012). Neck rotation modulates flexion synergy torques indicating an ipsilateral reticulospinal source for impairment in stroke. Journal of N europhysiology, 108 (11), 3096–104.

    Article  Google Scholar 

  11. Endo, T., Sugiyama, T., & Someya, T. (2006). Attention-deficit/ hyperactivity disorder and dissociative disorder among abused children. Psychiatry and Clinical Neurosciences, 60, 434–8.

    Article  PubMed  Google Scholar 

  12. Fagiolini, M., Jensen, C.L., & Champagne, F.A. (2009) Epigenetic influences on brain development and plasticity. Current Opinion in Neurobiology, 19, 207–12.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Franz, E.A., & Gillett, G. (2011) John Hughlings Jackson’s evolutionary neurology: a unifying framework for cognitive neuroscience. Brain, 134, 3114–20.

    Article  PubMed  Google Scholar 

  14. Ghanizadeh, A. (2011). Predictors of postural stability in children with ADHD. Journal of Attention Disorders, 15(7), 604–10.

    Article  Google Scholar 

  15. Jackson, JH. (1884). The Croonian Lectures on Evolution and Dissolution of the Nervous System. British Medical Journal, 1, 591–3, 660-3, 703-7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jackson, JH. (1931). Selected writings of John Hughlins Jackson. Vol 1. On epilepsy and epileptiform convulsions. Taylor J, editor. London: Hodder and Stoughton.

  17. Jacyna, L.S. (2011) Process and progress: John Hughlings Jackson’s philosophy of science. Brain, 134, 3121–6.

    Article  PubMed  Google Scholar 

  18. Johnson, K.A., Robertson, I.H., Kelly, S.P., Silk, T. J, Barry, E., Dáibhis, A., Watchorn, A., Keavey, M., Fitzgerald, M., Gallagher, L., Gill, M., & Bellgrove, M.A. (2007). Dissociation in performance of children with ADHD and high-functioning autism on a task of sustained attention. Neuropsychologia, 45, 2234–45.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Keshavan, M.S., & Yeragani, V.K. (1987) Primitive reflexes in psychiatry. Lancet, 1, 1264.

    Article  PubMed  Google Scholar 

  20. Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 20, 265–76.

    PubMed  PubMed Central  Google Scholar 

  21. Konicarova, J, & Bob, P. (2012). Retained Primitive Reflexes and ADHD in Children. Activitas Nervosa Superior, 54, 135–138.

    Article  Google Scholar 

  22. Links, K.A., Merims, D., Binns, M.A., Freedman, M., & Chow, T.W. (2010) Prevalence of primitive reflexes and Parkinsonian signs in dementia. Canadian Journal of Neurological Sciences, 37, 601–7.

    Article  PubMed  Google Scholar 

  23. Makris, N., Biederman, J, Monuteaux, M.C., & Seidman, L.J. (2009). Towards conceptualizing a neural systems-based anatomy of attention-deficit/ hyperactivity disorder. Developmental Neuroscience, 31 (1-2), 36–49.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meares, R. (1999). The Contribution of Hughlings Jackson to an Understanding of Dissociation. American Journal of Psychiatry, 156, 1850–1855.

    PubMed  Google Scholar 

  25. McPhillips, M., & Jordan-Black, J.A. (2007). Primary reflex persistence in children with reading difficulties (dyslexia): A cross-sectional study. Neuropsychologia, 45, 748–754.

    Article  PubMed  Google Scholar 

  26. McPhillips, M., Hepper, P.G., & Mulhern, G. (2000). Effects of replicating primary-reflex movements on specific reading difficulties in children: a randomised, double-blind, controlled trial. Lancet, 355, 537–541.

    Article  PubMed  Google Scholar 

  27. Nicolson, S.E., Chabon, B., Larsen, K.A., Kelly, S.E., Potter, A.W., & Stern, T.A. (2011). Primitive reflexes associated with delirium: a prospective trial. Psychosomatics, 52, 507–12.

    Article  PubMed  Google Scholar 

  28. Halloran, C.J, Kinsella, G.J., Storey, E. (2012). The cerebellum and neuropsychological functioning: a critical review. Journal of Clinical and Experimental Neuropsychology, 34(1), 35–56.

    Article  Google Scholar 

  29. Polatajko, H.J. (1999) Developmental Coordination Disorder (DCD): alias, the clumsy child syndrome. In K. Whitmore, H. Hart, & G. Willems (Eds.), A neurodevelopmental approach to specific learning disorders. London: Mac Keith Press,. 119–133.

    Google Scholar 

  30. Sanders, R.D., & Gillig, P.M. (2011). Reflexes in psychiatry. Innovations in Clinical Neuroscience, 8, 24–9.

    PubMed  PubMed Central  Google Scholar 

  31. Shaw, P., & Rabin, C. (2009). New insights into attention-deficit/ hyperactivity disorder using structural neuroimaging. Current Psychiatry Reports, 11(5), 393–8.

    Article  Google Scholar 

  32. Taylor, M., Houghton, S., & Chapman, E. (2004). Primitive reflexes and attention deficit/ hyperactivity disorder: Developmental origins of classroom dysfunction. International Journal of Special Education, 19, 23–37.

    Google Scholar 

  33. Teicher, M.H., Tomoda, A., & Andersen, S.L. (2006). Neurobiological consequences of early stress and childhood maltreatment: are results from human and animal studies comparable? Annals of the New York Academy of Sciences, 1071, 313–323.

    Article  PubMed  Google Scholar 

  34. Touwen, B.C.L. (1984). Primitive reflexes-conceptional or semantic problem. In H.F.R. Prechtl (Ed.), Continuity of neural functions from prenatal to postnatal life. Oxford, Great Britain: Spastics International Medical Publications.

    Google Scholar 

  35. Youssef, H.A., & Waddington, J.L. (1988). Primitive (developmental) reflexes and diffuse cerebral dysfunction in schizophrenia and bipolar affective disorder: overrepresentation in patients with tardive dyskinesia. Biological Psychiatry, 23, 791–6.

    Article  PubMed  Google Scholar 

  36. Zafeiriou, D.I. (2004). Primitive reflexes and postural reactions in the neurodevelopmental examination. Pediatric Neurology, 31, 1–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jana Konicarova.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konicarova, J., Bob, P. Principle of Dissolution and Primitive Reflexes in AD HD. Act Nerv Super 55, 74–78 (2013). https://doi.org/10.1007/BF03379598

Download citation

Key words

  • ADHD
  • Developmental disorders
  • Dissolution
  • Dissociation
  • Primitive reflexes