Skip to main content

Advertisement

Log in

Toward a Hybrid Model of Developmental Coordination Disorder

  • Disorders of Motor (PH Wilson, Section Editor)
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

Purpose

This paper discusses the merits of a hybrid model of developmental coordination disorder (DCD), one that integrates cognitive neuroscience and ecological systems approaches. More specifically, we present an integrative summary of recent empirical work on DCD that enlist behavioural and neuroimaging methods and propose a theoretical interpretation through the lens of a hybrid model.

Findings

The review identifies two current hypotheses of DCD that find consistent support: the internal modelling deficit (IMD) and mirror neuron system (MNS) accounts. However, motor performance and brain activation patterns are not expressed in a uniform way under these hypotheses—motor deficits are manifested variously as a function of specific task and environmental constraints and condition severity. Moreover, we see evidence of compensatory processes and strategies.

Summary

Taken together, results support the broad hypothesis that children with DCD show distinct motor control deficits and differences in neural structure and function compared with typically developing children. However, researchers still have difficulty ascribing causation. The proposed hybrid (multi-component) model of DCD can help researchers generate novel hypotheses about specific mechanisms, explaining the constellation of deficits that is shown experimentally and observed clinically. This model can be applied to cognate disorders of childhood that affect movement and design of intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Motor learning refers to processes associated with practice or experience that lead to a relatively permanent change in movement skill or capacity.

  2. Motor abilities are relatively enduring motor traits or capacities that have biological origins and that bias skill learning; biological-environmental interactions determine these abilities. Examples include muscle strength, movement speed and multi-limb coordination.

  3. Motor skill refers to a task (with a specific goal) that involves physical movement (e.g. free-throw shooting in basketball, walking on stepping stones, tying shoelaces). Skills are normally refined/learned with practice.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Henderson SE, Henderson L. Toward an understanding of developmental coordination disorder. Adapt Phys Act Q. 2002;19(1):11–31.

    Google Scholar 

  2. Smits-Engelsman BC, Magalhães LC, Oliveira MA, Wilson PH. DCD research: how are we moving along? Hum Mov Sci. 2015;42:289–92.

    PubMed  Google Scholar 

  3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). Washington, DC: Author; 2013.

    Google Scholar 

  4. Kuhn T. The structure of scientific revolutions (3rd ed.): University of Chicago Press; 1996.

  5. • Wade MG, Kazeck M. Developmental coordination disorder and its cause: the road less travelled. Hum Mov Sci. 2017. A provocative case for ecological approaches to motor development.

  6. Gomez A, Sirigu A. Developmental coordination disorder: core sensori-motor deficits, neurobiology and etiology. Neuropsychologia. 2015;79:272–87.

    PubMed  Google Scholar 

  7. Davids KW. The constraints-based approach to motor learning: implications for a non-linear pedagogy in sport and physical education. In: Renshaw I, Davids KW, GJP S, editors. Motor learning in practice: a constraints-led approach. London: Routledge (Taylor & Francis Group); 2010. p. 3–16.

    Google Scholar 

  8. • Sugden D, Wade MG. Typical and atypical motor development. London: Wiley; 2013. 396 p. An accessible constraints-based approach to motor learning and development.

  9. Morton J. Understanding developmental disorders: a causal modelling approach: Wiley; 2008. 300 p.

  10. Johnson MH. Interactive specialization: a domain-general framework for human functional brain development? Dev Cogn Neurosci. 2011;1(1):7–21.

    PubMed  Google Scholar 

  11. Martin NC, Piek JP, Hay D. DCD and ADHD: a genetic study of their shared aetiology. Hum Mov Sci. 2006;25(1):110–24.

    PubMed  Google Scholar 

  12. Fliers EA, Vasquez AA, Poelmans G, Rommelse N, Altink M, Buschgens C, et al. Genome-wide association study of motor coordination problems in ADHD identifies genes for brain and muscle function. World J Biol Psychiatry. 2012;13(3):211–22.

    PubMed  Google Scholar 

  13. Newell KM. Motor skill acquisition. Annu Rev Psychol. 1991;42(1):213–37.

    CAS  PubMed  Google Scholar 

  14. • Wilson P, Smits-Engelsman B, Caeyenberghs K, Steenbergen B, Sugden D, Clark J, Mumford N, Blank R. Cognitive and neuroimaging findings in Developmental Coordination Disorder: New insights from a systematic review of recent research. Developmental Medicine and Child Neurology. (in press). A comprehensive review of experimental research on DCD spanning 2011 - 2016, highlighting possible individual-level constraints on performance.

  15. Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc B Biol Sci. 2003;358(1431):593–602.

    Google Scholar 

  16. Wolpert DM, Landy MS. Motor control is decision-making. Curr Opin Neurobiol. 2012;22(6):996–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Seidler RD, Kwak Y, Fling BW, Bernard JA. Neurocognitive mechanisms of error-based motor learning. Adv Exp Med Biol. 2013;39–60.

  18. Adams ILJ, Lust JM, Wilson PH, Steenbergen B. Compromised motor control in children with DCD: a deficit in the internal model? A systematic review. Neurosci Biobehav Rev. 2016;47:225–44.

    Google Scholar 

  19. • Wilmut K, Byrne M, Barnett AL. Reaching to throw compared to reaching to place: a comparison across individuals with and without developmental coordination disorder. Res Dev Disabil. 2013;34(1):174–82.An elegant study at the intersection of cognitive neuroscience and ecological psychology.

    PubMed  Google Scholar 

  20. Adams ILJ, Ferguson GD, Lust JM, Steenbergen B, Smits-Engelsman BCM. Action planning and position sense in children with developmental coordination disorder. Hum Mov Sci. 2016;46:196–208.

    Google Scholar 

  21. Langevin LM, MacMaster FP, Crawford S, Lebel C, Dewey D. Common white matter microstructure alterations in pediatric motor and attention disorders. J Pediatr. 2014;164(5):8.

    Google Scholar 

  22. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a pilot diffusion tensor imaging study. Pediatr Neurol. 2012;46(3):162–7.

    PubMed  Google Scholar 

  23. Debrabant J, Vingerhoets G, Van Waelvelde H, Leemans A, Taymans T, Caeyenberghs K. Brain connectomics of visual-motor deficits in children with developmental coordination disorder. J Pediatr. 2016;169:21–7e2.

    Google Scholar 

  24. Debrabant J, Gheysen F, Caeyenberghs K, Van Waelvelde H, Vingerhoets G. Neural underpinnings of impaired predictive motor timing in children with developmental coordination disorder. Res Dev Disabil. 2013;34(5):1478–87.

    PubMed  Google Scholar 

  25. Licari MK, Billington J, Reid SL, Wann JP, Elliott CM, Winsor AM, et al. Cortical functioning in children with developmental coordination disorder: a motor overflow study. Exp Brain Res. 2015;233(6):1703–10.

    Google Scholar 

  26. Pangelinan MM, Hatfield BD, Clark JE. Differences in movement-related cortical activation patterns underlying motor performance in children with and without developmental coordination disorder. J Neurophysiol. 2013;109(12):3041–50.

    PubMed  PubMed Central  Google Scholar 

  27. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. Int J Dev Neurosci. 2011;29(2):145–52.

    PubMed  Google Scholar 

  28. Kashiwagi M, Iwaki S, Narumi Y, Tamai H, Suzuki S. Parietal dysfunction in developmental coordination disorder: a functional MRI study. Neuroreport. 2009;20(15):1319–24.

    CAS  PubMed  Google Scholar 

  29. Reynolds JE, Licari MK, Billington J, Chen Y, Aziz-Zadeh L, Werner J, et al. Mirror neuron activation in children with developmental coordination disorder: a functional MRI study. Int J Dev Neurosci. 2015;47:309–19.

    Google Scholar 

  30. Caeyenberghs K, Taymans T, Wilson PH, Vanderstraeten G, Hosseini H, van Waelvelde H. Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism. Dev Sci. 2016;19:14.

    Google Scholar 

  31. Sripada CS, Kessler D, Angstadt M. Lag in maturation of the brain’s intrinsic functional architecture in attention-deficit/hyperactivity disorder. Proc Natl Acad Sci U S A. 2016;111(39):6.

    Google Scholar 

  32. Tal-Saban M, Ornoy A, Parush S. Young adults with developmental coordination disorder: a longitudinal study. Am J Occup Ther. 2014;68(3):307–16.

    PubMed  Google Scholar 

  33. Tal-Saban M, Zarka S, Grotto I, Ornoy A, Parush S. The functional profile of young adults with suspected developmental coordination disorder (DCD). Res Dev Disabil. 2012;33(6):2193–202.

    PubMed  Google Scholar 

  34. • Ruddock S, Caeyenberghs K, Piek J, Sugden D, Hyde C, Morris S, et al. Coupling of online control and inhibitory systems in children with atypical motor development: a growth curve modelling study. Brain Cogn. 2016;109:12. A powerful longitudinal modelling approach that explores motor-cognitive coupling in DCD.

    Google Scholar 

  35. Sharfi K, Rosenblum S. Executive functions, time organization and quality of life among adults with learning disabilities. PlosOne. 2016;11(2):e0166939.

    Google Scholar 

  36. Ferguson GD, Duysens J, Smits-Engelsman BCM. Children with developmental coordination disorder are deficient in a visuo-manual tracking task requiring predictive control. Neuroscience. 2015;286:13–26.

    CAS  PubMed  Google Scholar 

  37. • Mosca S, Langevin LM, Dewey D, Innes AM, Lionel AC, Marshall CC, et al. Copy number variations are enriched for neurodevelopmental genes in children with developmental coordination disorder. J Med Genet. 2016;53:8. This recent genetic study of copy number variation (CNV) in DCD revealed an increased rate of rare CNVs and rare, genic CNVs—a landmark finding, perhaps?.

    Google Scholar 

  38. • Pearsall-Jones JG, Piek JP, Levy F. Developmental coordination disorder and cerebral palsy: categories or a continuum? Hum Mov Sci. 2010;29(5):787–98. An excellent review paper that explores the question of shared aetiologies between DCD and CP.

    PubMed  Google Scholar 

  39. Lust JM, Wilson PH, Steenbergen B. Motor imagery difficulties in children with cerebral palsy: a specific or general deficit? Res Dev Disabil. 2016;57:10.

    Google Scholar 

  40. Steenbergen B, Jongbloed-Pereboom M, Spruijt S, Gordon AM. Impaired motor planning and motor imagery in children with unilateral spastic cerebral palsy: challenges for the future of pediatric rehabilitation. Dev Med Child Neurol. 2013;55(SUPPL.4):43–6.

    PubMed  Google Scholar 

  41. Verrel J, Bekkering H, Steenbergen B. Eye-hand coordination during manual object transport with the affected and less affected hand in adolescents with hemiparetic cerebral palsy. Exp Brain Res. 2008;187(1):107–16.

    PubMed  PubMed Central  Google Scholar 

  42. Mutsaarts M, Steenbergen B, Bekkering H. Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy. Exp Brain Res. 2006;172(2):151–62.

    PubMed  Google Scholar 

  43. Crajé C, Aarts P, Nijhuis-van der Sanden M, Steenbergen B. Action planning in typically and atypically developing children (unilateral cerebral palsy). Res Dev Disabil. 2010;31(5):1039–46.

    PubMed  Google Scholar 

  44. Van Elk M, Crajé C, Beeren MEGV, Steenbergen B, Van Schie HT, Bekkering H. Neural evidence for impaired action selection in right hemiparetic cerebral palsy. Brain Res. 2010;1349:56–67.

    PubMed  Google Scholar 

  45. Williams J, Hyde C, Spittle A. Developmental coordination disorder and cerebral palsy: is there a continuum? Curr Dev Disord Rep. 2014;1:118–24.

    Google Scholar 

  46. Caeyenberghs K, Leemans A, Geurts M, Linden CV, Smits-Engelsman BC, Sunaert S, et al. Correlations between white matter integrity and motor function in traumatic brain injury patients. Neurorehabil Neural Repair. 2011;25(6):11.

    Google Scholar 

  47. Caeyenberghs K, Leemans A, Geurts M, Taymans T, Vander Linden C, Smits-Engelsman BC, et al. Brain-behavior relationships in young traumatic brain injury patients: fractional anisotropy measures are highly correlated with dynamic visuomotor tracking performance. Neuropsychologia. 2010;48(5):11.

    Google Scholar 

  48. Hoon AH, Lawrie WT, Melhem ER, Reinhardt EM, Van Zijl PC, Solaiyappan M, et al. Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology. 2002;59(5):5.

    Google Scholar 

  49. Hoon AH, Stashinko EE, Nagae LM, Lin DD, Keller J, Bastian A, et al. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev Med Child Neurol. 2009;51(9):8.

    Google Scholar 

  50. Nagae LM, Hoon AH, Stashinko E, Lin D, Zhang W, Levey E, et al. Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. Am J Neuroradiol. 2007;28(7):10.

    Google Scholar 

  51. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS One. 2007;2(7).

    PubMed  PubMed Central  Google Scholar 

  52. Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005;1(4).

    PubMed  PubMed Central  Google Scholar 

  53. Griffa A, Baumann PS, Thiran JP, Hagmann P. Structural connectomics in brain diseases. NeuroImage. 2013;80:12.

    Google Scholar 

  54. Caeyenberghs K, Leemans A, De Decker C, Heitger M, Drijkoningen D, Linden CV, et al. Brain connectivity and postural control in young traumatic brain injury patients: a diffusion MRI based network analysis. Neuroimage-Clin. 2012;1(1):10.

    Google Scholar 

  55. Lewis JD, Theilmann RJ, Townsend J, Evans AC. Network efficiency in autism spectrum disorder and its relation to brain overgrowth. Front Hum Neurosci. 2013;10:7.

    Google Scholar 

  56. Fischi-Gomez E, Muñoz-Moreno E, Vasung L, Griffa A, Borradori-Tolsa C, Monnier M, et al. Brain network characterization of high-risk preterm-born school-age children. Neuroimage-Clin. 2016;11:15.

    Google Scholar 

  57. Davids K, Button C, Bennett S. Dynamics of skill acquisition: a constraints-led approach. Champaign: Human Kinetics; 2008. 251 p

    Google Scholar 

  58. Niemeijer AS, Smits-Engelsman BCM, Schoemaker MM. Neuromotor task training for children with developmental coordination disorder: a controlled trial. Dev Med Child Neurol. 2007;49(6):406–11.

    CAS  PubMed  Google Scholar 

  59. Green D, Wilson P. Applications of VR technologies for childhood disability. Virtual Reality for Physical and Motor Rehabilitation: Springer; 2014. p. 203–16.

  60. Green D, Wilson PH. Use of virtual reality in rehabilitation of movement in children with hemiplegia—a multiple case study evaluation. Disabil Rehabil. 2012;34(7):593–604.

    PubMed  Google Scholar 

  61. Wilson P, Steenbergen B, Caeyenberghs K, Green D, Duckworth J. Integrating new technologies into the treatment of CP and DCD. Curr Dev Disord Rep. 2016;3(2):14.

    Google Scholar 

  62. Davis WE, Burton AW. Ecological task analysis: translating movement behavior theory into practice. Adapt Phys Act Q. 1991;8(2):154–77.

    Google Scholar 

  63. Davis WE, Broadhead G. Ecological task analysis and movement: human kinetics. 2007. 344 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Wilson.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Disorders of Motor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, P.H., Smits-Engelsman, B., Caeyenberghs, K. et al. Toward a Hybrid Model of Developmental Coordination Disorder. Curr Dev Disord Rep 4, 64–71 (2017). https://doi.org/10.1007/s40474-017-0115-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-017-0115-0

Keywords

Navigation