Skip to main content
Log in

Eigenvalues of the Laplacian in a Domain With a Thin Tubular Hole

  • Original Paper
  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We deal with the eigenvalues of the Laplacian in a domain with a thin tubular hole. We impose the Robin or the Neumann B.C on the boundary of the hole and investigate the detailed asymptotic behavior of the eigenvalues when the hole becomes thinner and shrinks to a lower dimensional manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H., H. Kang, M. Lim and H. Zribi, Layer potential techniques in spectral analysis. Part I: Complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions, Trans. Amer. Math. Soc., 362 (2010), 2901–2922.

    Article  MathSciNet  MATH  Google Scholar 

  2. Besson, G., Comportement asymptotique des valeurs prospres du Laplacien dans un domain avec un trou, Bull. Soc. Math. France 113 (1985), 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chavel, I. and D. Feldman, Spectra of domains in compact manifolds, J. Funct. Anal. 30 (1978), 198–222.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chavel, I. and D. Feldman, Spectra of manifolds with small handles, Comment. Math. Helv. 56 (1981), 83–102.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chavel, I. and D. Feldman, Spectra of Manifolds less a small Domain. Duke Math. J. 56 (1988), 399–414.

    Article  MathSciNet  MATH  Google Scholar 

  6. Coddington, E.A. and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  7. Courant, R. and D. Hilbert, Method of Mathematical Physics, I, Wiley-Interscience, New York, 1953.

    MATH  Google Scholar 

  8. Courtois, C., Spectrum of Manifolds with holes, J. Funct. Anal. 134 (1995), 194–221.

    Article  MathSciNet  MATH  Google Scholar 

  9. Davies, E.B., Spectral Theory and Differential Operators, Cambridge University Press, 1995.

    Book  MATH  Google Scholar 

  10. Edmunds, D.E. and W.D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1987.

    Google Scholar 

  11. Evans, L.C., Partial Differential Equations, AMS, GSM 19, 1998.

  12. Flucher, M., Approximation of Dirichlet eigenvalues on domains with small holes, J. Math. Anal. Appl. 193 (1995), 169–199.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D. and N. Trudinger, Elliptic Partial Differential Equations of Second Order Springer, New York, 1977.

    Book  MATH  Google Scholar 

  14. Gray, A., Tubes, Second Edition, Birkhäuser, 2004.

    Book  MATH  Google Scholar 

  15. Grebenkov, D.S. and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev. 55 (2013), 601–667.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hadamard, J., Memoire sur le probleme d’analyse relatif a equilibre des plaques elastiques encastrees, Memoires des Savants Etrangers 33 (1908), (cf. Oeuvres de Jacqes Hadamard Tom II, Centre National de la Recherche Scientifiques 1968, 515–631).

  17. Jimbo, S. and S. Kosugi, Spectra of domains with partial degeneration, J. Math. Sci. Univ. Tokyo 16 (2009), 269–414.

    MathSciNet  MATH  Google Scholar 

  18. Jimbo, S. and Y. Morita, Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation, J. Differential Equations 255 (2013), 1657–1683.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kobayashi, S. and K. Nomizu, Foundation of Differential Geometry I, Interscience, 1963.

    MATH  Google Scholar 

  20. Kozlov, V.A., V.G. Maz’ya and A.B. Movchan, Asymptotic Analysis of Fields in Multi-Structures, Oxford Mathematical Monographs, the Clarendon Press Oxford University Press, New York, 1999.

    MATH  Google Scholar 

  21. Lanza de Cristoforis, M., Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole-A functional analytic approach, Rev. Mat. Complutense 25 (2011), 369–412.

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, P., On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Ec. Norm. Super. 13 (1980), 451–469.

    Article  MathSciNet  MATH  Google Scholar 

  23. Maz’ya, V., S. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, I, II, Operator Theory Advances and Applications 111, 112, Birkhäuser 2000.

    Google Scholar 

  24. Mizohata, S., The Theory of Partial Differential Equations, Cambridge Univ. Press, Cambridge, 1973.

    MATH  Google Scholar 

  25. Ozawa, S., Singular variation of domains and eigenvalues of the Laplacian, Duke Math. J. 48 (1981), 767–778.

    Article  MathSciNet  MATH  Google Scholar 

  26. Ozawa, S., Electrostatic capacity and eigenvalues of the Laplacian, J. Fac. Sci. Univ. Tokyo 30 (1983), 53–62.

    MathSciNet  MATH  Google Scholar 

  27. Ozawa, S., Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo 30 (1983), 259–277.

    MathSciNet  MATH  Google Scholar 

  28. Ozawa, S., Geometric surgery of domains and eigenvalues of the Laplacian, Spectra of Riemannian manifolds, 91–98, Kaigai Publ. ed. M. Berger, S. Murakami, T. Ochiai 1983 Tokyo.

  29. Ozawa, S., Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary I, Osaka J. Math. 29 (1992), 837–850.

    MathSciNet  MATH  Google Scholar 

  30. Ozawa, S. and S. Roppongi, Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary II, Kodai Math. J. 15 (1992), 403–429.

    Article  MathSciNet  MATH  Google Scholar 

  31. Ozawa, S., Spectra of the Laplacian and singular variation of domain — removing an ε— neighborhood of a curve, unpublished note (1998).

    Google Scholar 

  32. Protter, M.H. and H.F. Weinberger, Maximum Principles in Differential Equations, Springer 1984, New York.

  33. Rauch, J. and M. Taylor, Potential and scattering theory on wildly perturbed domains, J. Funct. Anal. 18 (1975), 27–59.

    Article  MathSciNet  MATH  Google Scholar 

  34. Roppongi, S., Asymptotics of eigenvalues of the Laplacian with small spherical Robin boundary, Osaka J. Math. 30 (1993), 783–811.

    MathSciNet  MATH  Google Scholar 

  35. Shimakura, N., Partial Differential Operator of elliptic type, Transl. Math. Mono. 99 AMS, 1992.

    Google Scholar 

  36. Swanson, S. A., Asymptotic variational formulae for eigenvalues, Canad. Math. Bull. 6 (1963), 15–25.

    Article  MathSciNet  MATH  Google Scholar 

  37. Swanson, S. A., A domain perturbation problem for elliptic operators, Ann. Mat. Pura Appl. 64 (1977), 229–240.

    Article  MathSciNet  MATH  Google Scholar 

  38. Whittaker, E.T. and G.A. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1996.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Jimbo.

Additional information

Research supported by Grant-in-Aid Science Research (C) No 22540216, JSPS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimbo, S. Eigenvalues of the Laplacian in a Domain With a Thin Tubular Hole. J Elliptic Parabol Equ 1, 137–174 (2015). https://doi.org/10.1007/BF03377373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03377373

2010 Mathematics Subject Classication

Key words and phrases

Navigation