Skip to main content
Log in

On the second Robin eigenvalue of the Laplacian

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the Robin eigenvalue problem for the Laplace–Beltrami operator on Riemannian manifolds. Our first result is a comparison theorem for the second Robin eigenvalue on geodesic balls in manifolds whose sectional curvatures are bounded from above. Our second result asserts that geodesic balls in nonpositively curved space forms maximize the second Robin eigenvalue among bounded domains of the same volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As defined in Theorem 1.1.

References

  1. Ashbaugh, M.S., Benguria, R.D.: Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature. J. London Math. Soc. 52(2), 402–416 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bareket, M.: On an isoperimetric inequality for the first eigenvalue of a boundary value problem. SIAM J. Math. Anal. 8(2), 280–287 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bucur, D., Giacomini, A.: A variational approach to the isoperimetric inequality for the Robin eigenvalue problem. Arch. Ration. Mech. Anal. 198(3), 927–961 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bucur, D., Giacomini, A.: Faber-Krahn inequalities for the Robin-Laplacian: a free discontinuity approach. Arch. Ration. Mech. Anal. 218(2), 757–824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bossel, M.-H.: Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I. Math. 302(1), 47–50 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Chavel, I.: Eigenvalues in Riemannian geometry, volume 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, (1984). Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk

  7. Cheng, S.Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143(3), 289–297 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daners, D.: A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335(4), 767–785 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelen, N.: The PPW conjecture in curved spaces. J. Funct. Anal. 272(3), 849–865 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escobar, J.F.: An isoperimetric inequality and the first Steklov eigenvalue. J. Funct. Anal. 165(1), 101–116 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escobar, J.F.: A comparison theorem for the first non-zero Steklov eigenvalue. J. Funct. Anal. 178(1), 143–155 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freitas, P., Krejčiřik, D.: The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280, 322–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freitas, P., Laugesen, R.S.: From Neumann to Steklov and beyond, via Robin: the Weinberger way. Am. J. Math. 143(3), 969–994 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrot, A. (ed.): Shape Optimization and Spectral Theory. De Gruyter Open, Warsaw (2017)

    MATH  Google Scholar 

  15. Kennedy, J.: An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions. Proc. Am. Math. Soc. 137(2), 627–633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X., Wang, K.: First Robin eigenvalue of the \(p\)-Laplacian on Riemannian manifolds. Math. Z. 298(3–4), 1033–1047 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, X., Wang, K., Wu, H.: An upper bound for the first nonzero Steklov eigenvalue. Preprint, (2020). arXiv:2003.03093 [math.DG]

  18. Li, X., Wang, K., Wu, H.: The second Robin eigenvalue in non-compact rank-1 symmetric spaces. Preprint, (2022). arXiv:2208.07546 [math.DG]

Download references

Acknowledgements

We thank Professors Richard Schoen, Lei Ni and Zhou Zhang for their encouragement and support. We also thank the anonymous referee for valuable comments on the manuscript. X. Li is partially supported by Simons Collaboration Grant #962228 and a start-up grant at Wichita State University; K. Wang is partially supported by NSFC No.11601359; H. Wu is supported by ARC Grant DE180101348. Both K. Wang and H. Wu acknowledge the excellent work environment provided by the Sydney Mathematical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haotian Wu.

Additional information

Communicated by Sun-Yung Alice Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, K. & Wu, H. On the second Robin eigenvalue of the Laplacian. Calc. Var. 62, 256 (2023). https://doi.org/10.1007/s00526-023-02607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02607-2

Mathematics Subject Classification

Navigation