Skip to main content
Log in

Characteristics of rapidly solidified Al-Si-X powders for high-performance applications

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Among the variety of new aluminium alloys, the Al-Si-X P/M system appears to be the most suitable for high-performance applications in the automobile industry. Our work concerns the research on the possible application of this system for products with enhanced wear and high-temperature resistance. This paper presents the characteristics of the air-atomized J1 (Al-20Si-3Cu-1Mg), J2 (Al-20Si-3Cu-1Mg-5Fe), J3 (Al-20Si-3Cu-1Mg-7.5Ni), K1 (Al-20Si-5Fe-2Ni), and the argon-atomized K2 (Al-20Si-5Fe-2Ni) powders, aimed at optimizing the processing conditions of the final products, in terms of production techniques, powder morphologies, powder sizes and size distributions, cooling rates, specific areas, surface oxide thicknesses and oxygen contents. Atomization in air (J1, J2, J3, K1) and atomization in argon (K2) resulted in morphologically different powders. Particle-size distributions were similar, indicating cooling rates of ∼104 to 106 K sec−1. This cooling range proves that the theoretical estimate presented in this work is sufficiently accurate. Al-Si-X P/M alloys consisted of primary and eutectic silicon crystals in an aluminium matrix (J1) plus intermetallic compounds (J2, J3, K1, K2). Air-atomized powders with different chemical composition showed an average oxide thickness of ∼30 to 40 nm. In powders with equal chemical composition, an inert atomization atmosphere produced powders with smaller surface area, lower amount of oxygen, and thinner total oxide thickness. The composition of surface oxides was strongly influenced by the chemical composition but the thickness was mainly influenced by the atomization atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. AKECHI, Y. ODANI and N. KUROISHI, Sumitomo Electric Tech. Rev. 24, January (1985) p. 191.

    Google Scholar 

  2. T. HIRANO, F. OHMI, S. HORIE, F. KIYOTO and T. FUJITA, in “Proceedings of the 1st Conference on Rapidly Solidified Materials”, San Diego, California, edited by P. W. Lee and R. S. Carbonara (American Society for Metals, 1985) p. 327.

    Google Scholar 

  3. T. HIRANO, T. UI and F. OHMI, in “Proceedings of the 31st International SAMPE Symposium”, Los Angeles, California, edited by J. L. Bamer and R. Dunaetz (1986) p. 1655.

    Google Scholar 

  4. K. SHIBUE and S. YAMAUCHI, Sumitomo Light Metals Techn. Report 27 (1986) 22.

    Google Scholar 

  5. T. HIRANO and T. FUJITA, J. Jpn Inst. Light Metals 37 (1987) 670.

    Article  Google Scholar 

  6. T. FUJITA, F. KIYOTA, T. HIRANO and Y. KOJIMA, ibid. 37 (1987) 677.

    Article  Google Scholar 

  7. N. J. GRANT, in “Industrial Materials Science and Engineering”, edited by L. E. Murr (Marcel Dekker, New York and Basel, 1984) p. 243.

    Google Scholar 

  8. I. YAMAUCHI, I. OHNAKA, S. KAWAMOTO and T. FUKUSAKO, Trans. Jpn Inst. Metals 27 (1986) 187.

    Article  Google Scholar 

  9. J. W. BOHLEN, R. J. KAR and G. R. CHANANI, in “Rapidly Solidified Powder Aluminium Alloys”, edited by M. E. Fine and E. A. Starke (ASTM, Philadelphia, Pennsylvania, 1984) p. 167.

    Google Scholar 

  10. T. W. CLYNE, R. A. RICKS and P. J. GOODHEW, Int. J. Rapid Solidification 1 (1984–1985) 59.

    Google Scholar 

  11. M. BECKER, in “Heat Transfer: A Modern Approach” (Plenum, New York, 1986) p. 188.

    Book  Google Scholar 

  12. J. SZEKELY and N. J. THEMELIS, in “Rate Phenomena in Process Metallurgy” (Wiley-Interscience, New York, 1971) p. 237.

    Google Scholar 

  13. W. J. BEEK and K. M. K. MUTZALL, in “Transport Phenomena” (Wiley-Interscience, New York, 1975) p. 195.

    Google Scholar 

  14. D. R. PITTS and L. E. SISSOM, in “Theory and Problems of Heat Transfer” (Schaum’s Outline Series, McGraw-Hill, New York, 1977) p. 314.

    Google Scholar 

  15. A. R. E. SINGER and R. W. EVANS, Metals Technol. 10 (February) (1983) 61.

    Article  Google Scholar 

  16. W. J. BOETTINGER and S. R. CORIELL, in “Science and Technology of Undercooled Melt”, edited by P. R. Sahm, H. Jones and C. M. Adam (Martinus Nijhoff, Dordrecht, 1986) p. 81.

    Chapter  Google Scholar 

  17. J. E. HATCH (ed.), “Aluminium: Properties and Physical Metallurgy” (American Society for Metals, Metals Park, Ohio, 1984).

    Google Scholar 

  18. J. DUSZCZYK and P. JONGENBURGER, Powder Metall. 29 (1986) 20.

    Article  Google Scholar 

  19. H. MATYJA, B. C. GIESSEN and N. J. GRANT, J. Inst. Metals 96 (1968) 30.

    Google Scholar 

  20. J. DUSZCZYK and J. L. ESTRADA, in Proceedings of the Australian Bicentennial International Congress in Mechanical Engineering, New Materials and Processes for Mechanical Design, Brisbane, May (Institute of Engineers, Barton A.C.T., Australia, 1988) p. 96.

    Google Scholar 

  21. N. KUROISHI, Y. ODANI and Y. TAKEDA, Metal Powder Rep. (1985) 642.

  22. J. DUSZCZYK, J. L. ESTRADA, B. M. KOREVAAR, Z. FANG, T. L. J. de HAAN and P. COLIJN, Technical Report for Showa Denko K.K. (Tokyo, Japan), Delft University of Technology, The Netherlands, October, 1987.

    Google Scholar 

  23. J. PETKOVIC, translated from Poroshkovaya Metallurgiya 2 (113) (1972) 100.

    Google Scholar 

  24. D. H. RO, W. J. HAWS, E. KLAR and M. A. PAO (Eds) “Metals Handbook”, Vol. 7, “Powder Metallurgy”, 9th Edn (ASM, Metals Park, Ohio, 1984).

    Google Scholar 

  25. L. E. DAVIS, N. C. McDONALD, P. W. PALMBERG, G. E. GIACH and R. E. WEBER, in “Handbook of Auger Electron Spectroscopy”, 2nd Edn. (Physical Electronics Industries Inc, Edew Prairie, MN, 1976).

    Google Scholar 

  26. E. MINNI, Science 15 (1983) 270.

    Google Scholar 

  27. L. NYBORG, PhD thesis, Department of Engineering Metals, Chalmers University of Technology Gothenburg, Sweden (1987).

    Google Scholar 

  28. L. E. DAVIES (Ed.) “Modern Surface Analysis: Metallurgical Applications of Auger Electron Spectroscopy (AES) and X-Ray Photoelectron Spectroscopy (XPS)”, ATMS-AIME Short Course, Las Vegas, Nevada, 23–24 February (1980) (Metallurgical Society of AIME, Warrendale, Pennsylvania).

    Google Scholar 

  29. H. J. van BEEK and E. J. MITTEMEIJER, Thin Solid Films 122 (1984) 131.

    Article  Google Scholar 

  30. L. NYBORG and I. OLEFJORD, Powder Metall., to be published.

  31. R. PRUMBAUM, Int. Lab. October (1984) 44.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada, J.L., Duszczyk, J. Characteristics of rapidly solidified Al-Si-X powders for high-performance applications. J Mater Sci 25, 886–904 (1990). https://doi.org/10.1007/BF03372176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03372176

Keywords

Navigation