Skip to main content
Log in

The fatigue properties of wood in flexure

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A detailed review of the wood fatigue literature is presented and the need for experimental work under load control at a range of moisture contents and Rratios is emphasized. A laminated hardwood, Khaya ivorensis, a softwood, Sitka spruce, and compressed beech laminates were fatigue tested under load control in four point flexure. Tests were conducted in repeated and reversed loading over a range of five Rratios at three moisture contents, and the accumulation of fatigue damage was followed by microtoming fatigued wood and observing the formation of cell wall kinks by polarized light optical microscopy. Fatigue life is largely species independent when normalized by static strength. Increased moisture content reduces the static strength and fatigue life and reversed loading results in the lowest fatigue life. A constant life diagram for sliced Khaya laminate has been constructed which summarizes the effect of Rratio on fatigue life. Optical microscopy demonstrates that fatigue damage is progressive commencing on the compression face of flexural samples as fine scale cell wall kinks and developing into macroscopic creases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. DINWOODIE, “Timber, its Nature and Behaviour”, (Van Nostrand Reinhold Company Inc., New York, 1981).

    Google Scholar 

  2. R. F. LARK, “Construction of Low-Cost MOD O-A Wood Composite Wind Turbine Blades”, in Proceedings 28th Meeting of National Society for the Advancement of Materials and Process Engineering (1983) p. 1277.

  3. P. JAMIESON and D. MCLEISH, Institute of Electrical Engineers Proc. 130 Pt A (1983) 550.

    Google Scholar 

  4. M. D. ZUTECK, in Proceedings of DOE/NASA Horizontal Axis Wind Turbine Workshop (July 1981).

  5. L. M. WYATT, U. R. LENEL and M. A. MOORE in “Wind Energy Conversion 1983”, edited by P. Musgrove (Cambridge University Press, 1984) p. 235.

    Google Scholar 

  6. W. C. LEWIS, J. of the Struct. Div. (Proceedings of American Society of Civil Engineers, 1960) 15.

  7. W. C. LEWIS, Proceedings American Society for Testing Materials 46 (1946) 814.

    Google Scholar 

  8. W. J. KOMMERS, US Forest Prod. Lab. Report No. 1327 (1943).

  9. A. G. H. DIETZ and H. GRINSFELDER, Trans. American Society of Mechanical Engineers (April 1943) 187.

  10. G. JENKINS, Bristol Aircraft Ltd, Structures and Materials Laboratory Report No. 171-76B-3040 (1962).

  11. N. IMAYAMA and T. MATSUMOTO, J. Jap. Wood. Res. Soc. 16 No. 7 (1970) 319.

    Google Scholar 

  12. Y. IBUKI, H. SASAKI, M. KAWAMOTO and T. MAKU, J. Jap. Soc. Test Mater. 11 (1962) 103.

    Google Scholar 

  13. F. B. FULLER and T. T. OBERG, J. Aeronautical Sciences (1943) 81.

  14. T. MAKU and H. SASAKI, Mokuza Kenkyu, No. 31 (1963) 1.

  15. R. STERR, Holz als Roh und Werkstoff, 21 (1963) 47.

    Article  Google Scholar 

  16. M. OTA and Y. TSUBOTA, J. Jap. Wood Res. Soc. 13 (1967) 131.

    Google Scholar 

  17. Y. IBUKI, H. SASAKI, M. KAWAMOTO and T. MAKU, Mokuza Kenkyu, No. 31 (1963) 11.

  18. J. D. MCNATT, Wood Science, 11 (1978) 39.

    Google Scholar 

  19. W. C. LEWIS, Proc. US Forest Prod. Res. Soc., 5 (1951) 221.

    Google Scholar 

  20. A. C. SEKHAR, N. K. SUKLA and V. K. GUPTA, J. Natn. Bldgs. Org. 8 (1963) 36.

    Google Scholar 

  21. Idem, Holz als Roh und Werkstoff 22 (1964) 264.

    Article  Google Scholar 

  22. A. FREAS and F. WARREN, For. Prod. J. 9 (1959) 100.

    Google Scholar 

  23. W. C. LEWIS, US For. Prod. Lab. Report No. 2236, 1962.

  24. A. C. SEKHAR and N. K. SUKLA, J. Indian Acad. of Wood Sci. 10 (1979).

  25. R. SIEMINSKI, Hols als Roh und Werkstoff 18 (1960) 369.

    Article  Google Scholar 

  26. W. J. KOMMERS, US Forest Prod. Lab. Rep. No. 1305, 1943.

  27. Idem, ibid. No. 1320, 1943.

  28. R. M. KELLOGG, For. Prod. J. 8 (1958) 301.

    Google Scholar 

  29. Idem, ibid. 10 (1960) 586.

    Google Scholar 

  30. G. ROSE, Holz als Roh und Werkstoff 23 (1971) 271.

    Article  Google Scholar 

  31. W. GILDWALD, Holz als Roh und Werkstoff 19 (1961) 86.

    Article  Google Scholar 

  32. D. NOAK and V. STOCKMANN, ibid. 27 (1969) 464.

    Article  Google Scholar 

  33. N. IMAYAMA and T. MATSUMOTO, J. Jap. Wood Res. Soc. 20 (1974) 53.

    Google Scholar 

  34. B. DOBRASZCYK, “An investigation into the fracture and fatigue behaviour of wood”, PhD Thesis, University of Bath, Bath (1983).

    Google Scholar 

  35. K. SATO, M. NOGUCHI and M. FUSHITANI, J. Jap. Wood Res. 29 (1983) 409.

    Google Scholar 

  36. F. KOLLMANN and E. SCHMIDT, Holz als Roh und Werkstoff 20 (1962), 333.

    Article  Google Scholar 

  37. L. BACH, Wood Science 5 (1973) 161.

    Google Scholar 

  38. C. T. KEITH, ibid. 4 (1971) 71.

    Google Scholar 

  39. J. M. DINWOODIE, Nature, 212 (1966) 525.

    Article  Google Scholar 

  40. Idem, J. Inst Wood Sci. No. 21 (1968) 37.

  41. J. S. NADEAU, R. BENNET and E. R. FULLER, J. Mat. Sci. 17 (1982) 2831.

    Article  Google Scholar 

  42. C. T. KEITH and W. A. COTE, For. Prod. J. 18 (1968) 67.

    Google Scholar 

  43. S. K. MALHOTRA and I. BAZAN, Wood Science 13 (1980) 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, K.T., Ansell, M.P. The fatigue properties of wood in flexure. J Mater Sci 25, 865–878 (1990). https://doi.org/10.1007/BF03372174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03372174

Keywords

Navigation