Skip to main content
Log in

The inspiratory to end-tidal oxygen difference during exercise

  • Published:
International journal of clinical monitoring and computing

Abstract

Objective. Fast paramagnetic oxygen analyzers have made it possible to measure inspiratory to end-tidal oxygen concentration difference (P(i-et)O2) breath-by-breath. It is now frequently displayed on monitors during routine anesthesia. We wanted to study the effects of major changes in metabolism, ventilation and circulation on P(i-et)O2. Methods. Ten healthy male volunteers were studied under exercise. P(i-et)O2 was measured with a fast-response paramagnetic differential oxygen sensor. Cardiac output was measured with non-invasive transthoracic electrical bioimpedance. Metabolism was measured with indirect calorimetry and ventilation with a side stream spirometer. After a rest period, the subjects cycled at 30W and 60W, 6 minutes on each work load and were then observed during 10 minutes of rest. Results. P(i-et)O2 corresponded well to V̇O2/V̇a (the oxygen uptake to alveolar ventilation quotient) correlation showed r = 0.79. P(i-et)O2 was influenced by changes in cardiac output which occurred primarily at the start and at the end of exercise. Expired minute ventilation (V̇e) multiplied by P(i-et)O2 was related to cardiac output with a high intrapersonal correlation. Conclusion. P(i-et)O2 is a good measure of adequate ventilation in relation to the oxygen consumption level and multiplied by V̇e it might offer a non-invasive bedside parameter indicating changes in cardiac output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meriläinen PT. A fast differential paramagnetic O2-sensor. Int J Clin Monit Comput 1988; 5: 187–195

    Article  PubMed  Google Scholar 

  2. Meriläinen PT. A differential paramagnetic sensor for breath-by-breath oximetry. J Clin Monit 1990; 6: 65–73

    Article  PubMed  Google Scholar 

  3. Bengtsson J, Bengtsson A, Stenqvist O, Bengtson JP. Effects of hyperventilation on the inspiratory to end-tidal oxygen difference. Br J Anaesth 1994; 73: 140–144

    Article  CAS  PubMed  Google Scholar 

  4. Bengtsson J, Ederberg S, Stenqvist O, Bengtson JP. Do changes in cardiac output affect the inspiratory to end-tidal oxygen difference? Acta Anaesthesiol Scand 1995; 39: 1075–1079

    Article  CAS  PubMed  Google Scholar 

  5. Meriläinen PT. Metabolic monitor. Int J Clin Monit Comput 1987; 4:167–177

    Article  PubMed  Google Scholar 

  6. Takala J, Keinänen O, Väisänen P, Kari A. Measurement of gas exchange in intensive care: Laboratory and clinical validation of a new device. Crit Care Med 1989; 17: 1041–1047

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein DP. Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med 1986; 14: 898–901

    Article  CAS  PubMed  Google Scholar 

  8. Jewkes C, Sear JW, Verhoeff F, Sanders DJ, Foex P. Noninvasive measurement of cardiac output by thoracic electrical bioimpedance: a study of reproducibility and comparison with thermodilution. Br J Anaesth 1991; 67: 788–794

    Article  CAS  PubMed  Google Scholar 

  9. Sramec BB. Hemodynamic and pump-performance monitoring by electrical bioimpedance. Problems in Respiratory Care 1989; 2: 274–290

    Google Scholar 

  10. Nunn JF. Nunn’s applied respiratory physiology. Oxford: Butterworth-Heinemann Ltd, 1993

    Google Scholar 

  11. Schoene RB. Physiology of exercise. In: Pierson DJ, Kacmarek RM, eds. Foundations of Respiratory Care. New York: Churchill Livingstone, 1992: 135–139

    Google Scholar 

  12. Diamond L, Casaburi R, Wasserman K, Whipp BJ. Kinetics of gas exchange and ventilation in transitions from rest or prior exercise. J Appl Physiol 1977; 43: 704–708

    CAS  PubMed  Google Scholar 

  13. Wasserman K. Breathing during exercise. N Engl J Med 1978; 298: 780–785

    Article  CAS  PubMed  Google Scholar 

  14. Jones NL, McHardy CJR, Naimark A. Physiological dead space and alveolar-arterial gas pressure differences during exercise. Clin Sci 1966; 31: 19–29

    CAS  PubMed  Google Scholar 

  15. Eberhard P, Mindt W, Schäfer R. Cutaneous blood gas monitoring in the adult. Crit Care Med 1981; 9: 702–705

    Article  CAS  PubMed  Google Scholar 

  16. Hesser CM, Matell G. Effects of light and moderate exercise on alveolar-arterial O2 tension difference in man. Acta Physiol Scand 1965; 63: 247–256

    Article  CAS  PubMed  Google Scholar 

  17. Nunn JF. Nunn’s applied respiratory physiology. Oxford: Butterworth-Heinemann Ltd, 1993

    Google Scholar 

  18. Gueugniaud P-Y, Muchada R, Bertin-Maghit M, Griffith N, Petit P. Non-invasive continuous haemodynamic and PetCO2 monitoring during peroperative cardiac arrest. Can J Anaesth 1995; 42: 910–913

    Article  CAS  PubMed  Google Scholar 

  19. Morimoto Y, Kemmotsu O, Murakami F, Yamamura T, Mayumi T. End-tidal CO2 changes under constant cardiac output during cardiopulmonary resuscitation. Crit Care Med 1993; 21:1572–1576

    Article  CAS  PubMed  Google Scholar 

  20. Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med 1985; 13: 907–909

    Article  CAS  PubMed  Google Scholar 

  21. Isserles SA, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg 1991; 73: 808–814

    Article  CAS  PubMed  Google Scholar 

  22. Shibutani K, Muraoka M, Shirasaki S, Kubal K, Sanchala VT, Gupte P. Do changes in end-tidal PCO2 quantitatively reflect changes in cardiac output. Anesth Analg 1994; 79: 829–833

    Article  CAS  PubMed  Google Scholar 

  23. Nunn JF. Nunn’s applied respiratory physiology. Oxford: Butterworth-Heinemann Ltd, 1993

    Google Scholar 

  24. Baker RW, Burki NK. Alterations in ventilatory to tidal volume. pattern and ratio of dead space to tidal volume. Chest 1987; 92: 1013–1017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengtsson, J., Bengtson, J.P. The inspiratory to end-tidal oxygen difference during exercise. Int. J. Clin. Mon. Comp. 14, 217–223 (1997). https://doi.org/10.1007/BF03356566

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356566

Key words

Navigation