Skip to main content
Log in

Effectiveness of Trichoderma spp. obtained from re-used soilless substrates against Pythium ultimum on cucumber seedlings

Wirksamkeit von Trichoderma spp. aus wiederverwendeten erdelosen Trägersubstraten gegenüber Pythium ultimum an Gurkensämlingen

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Thirty-nine Trichoderma strains isolated from effective re-used substrates used in soilless systems and two commercial formulations (Trichoderma viride TV1 and Remedier WP) were tested against Pythium ultimum, the causal agent of cucumber damping-off, under greenhouse and growth chamber conditions. Trichoderma was applied to the soil or by root dipping. Plant growth promotion activity of the Trichoderma strains was also evaluated in absence of the pathogen. The best and most consistent results were obtained by applying Trichoderma to the soil, 7 days before soil infestation with the pathogen. Twelve out of 39 Trichoderma strains (FC 1, 2, 6, 7, 12, 19, 24, 38, 39, 69, 72 and 80) showed the best activity against P. ultimum and four of them provided a 95% efficacy. The activity of such strains resulted slightly better than that of the commercial formulation Remedier. Some of the best strains also showed a good growth promoting ability, as demonstrated by a positive effect on biomass produced. Therefore, the good biocontrol ability of Trichoderma was confirmed in strains isolated from soilless systems. Such biocontrol agents may play a role in the suppressiveness of substrates used for soilless cultivation.

Zusammenfassung

Neununddreißig Trichoderma-Stämme wurden aus wiederverwendeten erdelosen Trägersubstraten isoliert und zusammen mit zwei kommerziellen Formulierungen (Trichoderma viride TV1 und Remedier WP) im Gewächshaus und in Phytotronen auf ihre Wirksamkeit gegenüber Pythium ultimum, dem Erreger der Umfallkrankheit der Gurke, untersucht. Trichoderma wurde zum Boden zugegeben oder als Wurzeltauchbehandlung appliziert. Die pflanzenwachstumsfördernde Aktivität der Trichoderma-Stämme wurde daneben in Abwesenheit des Erregers untersucht. Die besten und konsistentesten Ergebnisse wurden mit einer Bodenbehandlung 7 Tage vor der Inokulation des Bodens erzielt. Zwölf von 39 untersuchten Trichoderma - Stämm en (FC 1, 2, 6, 7, 12, 19, 24, 38, 39, 69, 72 and 80) zeigten die höchste Aktivität gegenüber P. ultimum und vier von ihnen besaßen eine 95%ige Wirksamkeit. Ihre Aktivität übertraf die der kommerziellen Formulierung Remedier geringfügig. Einige der wirksamsten Stämme zeigten ebenfalls einen positiven Einfluss auf die gebildete Biomasse und damit eine deut- liche pflanzenwachstumsfördernde Aktivität. Das hohe antagonistisch Potential von Trichoderma konnte daher für Stämme aus erdelosen Trägersubstraten bestätigt werden. Diese Stämme könnten zur Suppressivität von Substraten beitragen, die für die erdelose Kultivierung verwendet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, Y.S., G.R. Knudsen, 2005: Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderna harzianum. Biol. Control 96, 236–242.

    Article  Google Scholar 

  • Calvo-Bado, L.A., T.R. Petitt, N.R. Parsons, G.M. Petch, J.A.W. Morganorgan, J.M. Whipps, 2003: Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water. Appl. Environ. Microbiol. 69, 2116–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo-Bado, L. A., G. Petch, N.R. Parsons, J.A.W. Morgan, T.R. Petitt, J.M. Whipps, 2006: Microbial community responses associated with the development of oomycete plant pathogens on tomato roots in soilless growing systems. J. Appl. Microbiol. 100, 1194–1207.

    Article  CAS  PubMed  Google Scholar 

  • Cuartero, J., H. Laterrot, J.C. Van Lenteren, 1999: Host-plant resistance to pathogens and arthropod pests. In: R. ALBAJES, M.L. GULLINO, J.C. VAN LENTERE, Y. ELAD (eds.): Integrated Pest Management in Greenhouse Crops, Vol. 14, pp. 124–138. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Article  Google Scholar 

  • Garibaldi, A., F. Clematis, M.L. Gullino, 2009: Microrganismi isolate da substrati di coltura riciclati per il fuori suolo possono contenere il marciume del colletto del pomodoro. Protezione delle colture 2(2), 63.

    Google Scholar 

  • Clematis, F., A. Minuto, M.L. Gullino, A. Garibaldi, 2009: Suppressiveness to Fusarium oxysporum f. sp. radicis-lycopersici in re-used perlite and perlite-peat substrates in soilless tomatoes. Biolo. Control 48, 108–114.

    Article  Google Scholar 

  • Garibaldi, A., A. Minuto, V. Grasso, M.L. Gullino, 2003: Application of selected antagonistic strains against Phytophthora cryptogea on gerbera in closed soilless systems with disinfestation by slow sand filtration. Crop Prot. 22, 1053–1061.

    Article  Google Scholar 

  • Harman, G.E., 2000: Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis. 84, 377–393.

    Article  Google Scholar 

  • Harman, G.E., C.R. Howell, A. Viterbo, I. Chet, M. Lorito, 2004: Trichoderma species — opportunistic, avirulent plant symbionts. Nature Rev. Microbiol. 2, 43–56.

    Article  CAS  Google Scholar 

  • Koening, S.C., C. Overstreet, J.S. Noling, P.A. Donald, J.O. Becker, B.A. Fortnum, 1999: Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994: J. Nematol. 31 (4 s), 587–618.

    Google Scholar 

  • Levis, J.A., T.H. Barksdale, G.C. Papavizas, 1990: Greenhouse and field studies on the biological control of tomato fruit rot caused by Rhizoctonia solani. Crop Prot. 9, 8–14.

    Article  Google Scholar 

  • Levis, J.A., R.D. Lumsden, 2001: Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Prot. 20, 49–56

    Article  Google Scholar 

  • Martin, F.N., J.E. Loper, 1999: Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit. Rev. Plant Sci. 18, 11–181.

    Article  Google Scholar 

  • Minuto, A., F. Clematis, M.L. Gullino, A. Garibaldi, 2007: Induced suppressiveness to Fusarium oxysporum f.sp. radicis-lycopersici in rockwool substrate used in closed soilless systems. Phytoparasitica 35, 77–85.

    Article  Google Scholar 

  • Naseby, D.C., J.A. Pascual, J.M. Lynch, 1999: Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J. Appl. Microbiol. 88, 161–169.

    Article  Google Scholar 

  • Papavizas, G.C., 1985: Trichoderma and Gliocladium: Biology, ecology and the potential for biocontrol. Annu. Rev. Phytopathol. 23, 23–54.

    Article  Google Scholar 

  • Paulitz, T.C., R.R. Belanger, 2001: Biological control in green- house systems. Annu. Rev. Phytopathol. 39, 103–133.

    Article  CAS  PubMed  Google Scholar 

  • Postma, J., 2009: The status of biological control of plant diseases in soilless cultivation. In: U. GISI, I. CHET, M.L. GULLINO (eds.): Recent Developments in Management of Plant Diseases, Springer Netherlands, Dordrecht, The Netherlands, in press.

    Google Scholar 

  • Postma, J., M.J.E.I.M. Willemsen-De Klein, J.D. Van Elsas, 2000: Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown in rockwool. Phytopathology 90, 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Postma, J., B.P.J. Geraas, R. Pastoor, D. Van Elsas, 2005: Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 95, 808–818.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, K., G. Gilaridi, A. Garibaldi, M.L. Gullino, 2009: Bacterial antagonists from used rockwool soilless substrates suppress Fusarium wilt of tomato. J. Plant Pathol. 91, 145–152.

    Google Scholar 

  • Stanghellini, M.E., S.L. Rasmussen, 1994: Hydroponics: a so- lution for zoosporic pathogens. Plant Dis. 78, 1129–1138.

    Article  Google Scholar 

  • Van Os, E.A., J. Postma, 2000: Prevention of root diseases in closed soilless growing systems by microbial optimization and slow sand filtration. Acta Hortic. 532, 97–102.

    Google Scholar 

  • Van Os, E.A., J. Postma, T.R. Pettit, W. Wohanka, 2004: Microbial optimization in soilless cultivation: a replacement for methyl bromide. Acta Hortic. 635, 47–58.

    Google Scholar 

  • Verma, M., S. Brar, R.D. Tyagi, R.Y. Surampalli, J.R. Valero, 2007: Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem. Eng. J. 37, 1–20.

    Article  Google Scholar 

  • Whipps, J.M., 2001: Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511.

    Article  CAS  PubMed  Google Scholar 

  • Zitter, T.A., D.L. Hopkins, C.E. Thomas, 1996: Compendium of Cucurbit Disease. APS Press, St. Paul, MN, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Gullino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.B., Gilardi, G., Gullino, M.L. et al. Effectiveness of Trichoderma spp. obtained from re-used soilless substrates against Pythium ultimum on cucumber seedlings. J Plant Dis Prot 116, 156–163 (2009). https://doi.org/10.1007/BF03356304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356304

Key words

Stichwörter

Navigation