Skip to main content
Log in

Hot-salt stress-corrosion of titanium

a review of the problem and methods for improving the resistance of titanium

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A review is given of the problem of hot-salt stress cracking of titanium which covers: steady-state threshold data, environmental effects, mechanism of attack and preventive measures.

The conditions to produce hot-salt cracking under static steady-state conditions are well defined. But, there is yet no rationale for the lack of a single part failure in aircraft flight.

Effective preventive measures include: shot peen-ing, metallic coatings, special heat treatments and alloy selection. The Beta III alloy shows a high salt-cracking threshold even after heat treatment to high strength levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heimerl, G. J. and Hardrath, H. F.; “An Assessment of a Titanium Alloy for Supersonic Transport Operations,” Proceedings of the Conference on Aircraft Operating Problems, NASA SP-83, 1965, pp. 215–226.

    Google Scholar 

  2. Raring, H., Freeman, J. W., Schultz, J. W., and Voorhees, H. R.; Progress Report of the NASA Special Committee on Materials Research for Supersonic Transports, NASA TN D-1798, 1963.

    Google Scholar 

  3. Duttweiler, R. E., Wagner, R, R. and Antony, K. C; “An Investigation of Stress-Corrosion Failures in Titanium Compressor Components,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 152–178.

    Google Scholar 

  4. Private communication; H. R. Gray, NASA Lewis Res., March 1970.

  5. Bauer, G. W., “Elevated Temperature Stability of Commercial Titanium Alloys.” Paper presented at Physical Metallurgy Symposium, Watertown Arsenal, Sept. 1955.

    Google Scholar 

  6. Turley, R. V., and Avery, C. H.; “Elevated-Temperature Static and Dynamic Sea-Salt Stress Cracking of Titanium Alloys,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 1–30.

    Google Scholar 

  7. Piper, D. E., and Fager, D. N.; “The Relative Stress-Corrosion Susceptibility of Titanium Alloys in the Presence of Hot Salt,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 31–52.

    Google Scholar 

  8. Simenz, R. F., Van Orden, J. M., and Wald, G. G.; “’Environmental Effects Studies on Selected Titanium Alloys,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 53–7.

    Google Scholar 

  9. Petersen, V. C, and Bomberger, H. B.; “The Mechanism of Salt Attack on Titanium Alloys,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 80–94.

    Google Scholar 

  10. Hatch, A. J., Rosenberg, N. W., and Erbin, E. F.; “Effects of Environment on Cracking in Titanium Alloys,” Stress-Corrosion of Cracking Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 122–136.

    Google Scholar 

  11. Donachie, M. J., Jr., Danesi, W. P., and Pinkowish, A. A.; “Effects of Salt Atmosphere on Crack Sensitivity of Commercial Titanium Alloys at 600 to 900F,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 179–193.

    Google Scholar 

  12. Rideout, S. P., Louthan, S. P., and Selby, C. L.; “Basic Mechanisms of Stress-Corrosion Cracking of Titanium,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 137–151.

    Google Scholar 

  13. Crossley, F. A., Reichel, C. J., and Simcoe, C. R.; “The Determination of the Effects of Elevated Temperatures on the Stress Corrosion Behavior of Structural Materials,” WADD Technical Report 60–191, May 1960.

    Google Scholar 

  14. Heimerl, G. J., Braski, D. N., Royster, D. M., and Dexter, H. B.; “Salt Stress Corrosion of Ti-8Al-lMo-lV Alloy Sheet at Elevated Temperatures,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 194–214.

    Google Scholar 

  15. Martin, G,; “Investigation of Long-Term Exposure Effects Under Stress of Two Titanium Structural Alloys,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 95–120.

    Google Scholar 

  16. Logan, H. L., et al; “Chemical and Physical Mechanisms of Salt Stress-Corrosion Cracking in Titanium 8-1-1 Alloy,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 215–228.

    Google Scholar 

  17. Gray, H. R.; “Hot-Salt Stress-Corrosion of Titanium Alloys: Generation of Hydrogen and Its Embrittling Effect,” NASA Technical Note TN D-5000, 1969.

    Google Scholar 

  18. Kirchner, R. L., and Ripling, E. J.; “The Diffusion of Corrosion Products in Hot-Salt Stress-Corrosion Cracking of Titanium,” Stress-Corrosion Cracking of Titanium, Special Technical Publication No. 397, ASTM, 1966, pp. 230–245.

    Google Scholar 

  19. Kochka, E. L., and Petersen, V. C; “The Salt Corrosion of Titanium Alloys at Elevated Temperatures,” Final Technical Report No. AD-255871, Department of the Navy, Contract No. NOas 60-6004-C, January 15, 1961. Available from OTS.

    Google Scholar 

  20. Royster, D. M.; “Hot-Salt-Stress-Corrosion Cracking and Its Effect on Tensile Properties of Ti-8Al-lMo-lV Titanium Alloy Sheet,” NASA Technical Note TN D-4674, 1968.

    Google Scholar 

  21. Rideout, S. P.; “The Initiation of Hot-Salt Stress Corrosion Cracking of Titanium Alloys,” duPont, ASTM Symposium, Los Angeles 1967, to be publ. in ASTM STP.

    Google Scholar 

  22. “Progress Report on the Salt Corrosion of Titanium Alloys at Elevated Temperature and Stress,” TML Report 88, Battelle Memorial Institute, 1957.

  23. Beck, T. R., et al.; “Stress Corrosion Cracking of Titanium Alloys,” Quarterly Progress Report No. 14, Contract NAS 7-489, Boeing Sei. Res. Labs., 1969.

    Google Scholar 

  24. Weber, K. E., and Davis, A. D.; “Stress Corrosion of Titanium Alloys Under Simulated Supersonic Flight Conditions,” Report NASA Cr-981, Lockheed Aircraft Corp., 1967.

    Google Scholar 

  25. Ashbrook, R. A.; “A Survey of Salt Deposits in Compressors of Flight Gas Turbine Engines,” NASA Technical Note TN D-4999, 1969.

  26. Gray, H. R., and Johnson, J. R.; “Hot-Salt Stress-Corrosion of a Titanium Alloy Under a Simulated Turbine-Engine Compressor Environment,” NASA Technical Note TN D-5510, 1969.

    Google Scholar 

  27. Ondrejcin, R. S., Selby, C. L., and Rideout, S. P.; “Role of Chloride in Hot Salt Stress-Corrosion Cracking of Titanium?—Aluminum Alloys,” duPont, DP(NASA)-1118, 1967.

    Book  Google Scholar 

  28. Logan, H. L.; “Studies of Hot Salt Cracking of the Titanium 8AI-IM0-IV Alloy,” Proceedings of Conference on Fundamental Aspects of Stress Corrosion Cracking, Publ: Natl. Assn. of Corr. Engr., Houston, Tex. 1969.

    Google Scholar 

  29. Briggs, L. I., Jr.; “Petrography of Salt,” Sodium Chloride, Chap. 31, Kaufman, D. W., Ed., ACS Monograph Series No. 145, Reinhold Publ. Corp., New York, N. Y., 1960, pp. 25–26.

    Google Scholar 

  30. Braski, D. N.; “Preliminary Investigation of the Effect of Environmental Factors on Salt-Stress-Corrosion Cracking of TI-8AI-IM0-IV at Elevated Temperatures,” NASA TM X-1048, 1964.

    Google Scholar 

  31. Pride, R. A., and Woodard, J. M.; “Salt-Stress-Corrosion Cracking of Residually Stressed Ti-SAl-1Mo-1V Brake-Formed Sheet at 550°F,” NASA TM X-1082, 1965.

    Google Scholar 

  32. Stone, L. H., Freedman, A. H.; “Cyclic Hot Salt Stress Corrosion of Titanium Alloys,” Northrop Corp. AFML-TR-67-289, 1967.

    Google Scholar 

  33. Dexter, H. B.; “Salt Stress Corrosion of Residually Stressed Ti-8AI-IM0-IV Alloy Sheet after Exposure at Elevated Temperatures,” NASA TN D-3299, 1966.

    Google Scholar 

  34. Boudreau, J. S., Green, H. M., and Puffer, D. W.; “Stress Corrosion Behavior of Titanium Alloy 6-2-4-2 As Related to Engine Operation,” Proceedings 8th Annual National Conference on Environmental Effects of Aircraft and Propulsion Systems, Inst. Environmental Sci., 1968, pp. 105–122.

    Google Scholar 

  35. Rodden, C. J., Ed.; “Analytical Chemistry of the Manhattan Project,” p. 729, McGraw-Hill, N. Y., 1950.

    Google Scholar 

  36. Ondrejcin, R. S., and Louthan, M. R., Jr.; “Role of Hydrogen Chloride in Hot Salt Stress Corrosion Cracking of Titanium-Aluminum Alloys,” duPont, NASA CR-1133, 1968.

    Google Scholar 

  37. Boyd, J. D.; “Precipitation of Hydrides in Titanium Alloys,” Transactions of ASM, Vol. 62, 1969, pp. 977–983.

    Google Scholar 

  38. Petersen, V. C, Guernsey, J. B., and Buehl, R. C; “Manufacturing Procedures for a New High-Strength Beta Titanium Alloy Having Superior Formability,” Crucible Inc., AFML-TR-69-171-III, AD 857670, 1969.

    Google Scholar 

  39. Adams, R. E., and Tiesenhauser, E. V.; “Study of Stress Corrosion Cracking of Commercial Alloys,” TMCA. Proceedings of Conference on Fundamental Aspects of Stress Corrosion Cracking, National Association of Corrosion Engineers, Houston, Texas, 1969.

    Google Scholar 

  40. Judy, R. W., Jr., and Goode, R. J.; “Stress Corrosion Cracking Characteristics of Alloys of Titanium in Sea Water,” Naval Research Lab. Report 6564, 1967.

    Google Scholar 

  41. Jackson, J. D., and Boyd, W. K.; “Corrosion of Titanium,” DMIC Memo 218, Sept. 1966.

    Google Scholar 

  42. Bomberger, H. B., and Plock, L. F.; “Materials Used to Improve Corrosion Resistance of Titanium,” Materials Protection, June 1969, pp. 45–48.

    Google Scholar 

  43. Curtis, R. E., Boyer, R. R., and Williams, J. C; “Relationship Between Composition, Microstructure and Stress Corrosion Cracking in Titanium Alloys,” Transactions of ASM, Vol. 62, No. 2, June 1969, pp. 457–469.

    Google Scholar 

  44. Garcia, W. M., and Kiessling, M. D.; “Titanium’s Role in Super-jet Engines,” Metal Progress, March 1969, pp. 65–68.

    Google Scholar 

  45. Stein, B. A., Dexter, H. B., and Royster, D. M.; “Coatings and Surface Treatments for Longtime Protection of TI-8AI-IM0-IV Alloy Sheet from Hot Salt Stress Corrosion,” NASA TN D-4319, 1968.

    Google Scholar 

  46. Honeycutt, J. O., Jr., and Willhelm, A. C; “Effects of Commercially Available Protective Coatings on Stress-Corrosion Properties of SST Skin Materials,” Southern Research Institute Contract No. NASr 117, 1966.

    Google Scholar 

  47. Bomberger, H. B.; “Composite Titanium-Alloy Article Resistant to Hot Salt Corrosion,” U.S. Pat. 3,434,813?1969.

  48. Krienke, R. D.; “Plating Wear-Resistant Coatings on Titanium,” Metal Progress, Vol. 95, No. 6, June 1969, pp. 89–90.

    Google Scholar 

  49. Pride, R. A., et al.; “Effects of Longtime Environmental Exposure on Mechanical Properties of Sheet Materials for a Supersonic Transport,” NASA TN D-4318, 1968.

    Google Scholar 

  50. Gray, H. R.; “Hot Salt Stress-Corrosion of Titanium Alloys,” Aerospace Structural Materials, NASA SP-227, pp. 251-268.

  51. Romans, H. B.; “Stress Corrosion Test Environment and Test Durations,” Stress Corrosion Testing, Special Technical Publication 425, ASTM, 1967.

    Google Scholar 

  52. “Ti-6Al-2Sn-4Zr-2Mo?Metallurgical Properties of Sheet, Bar and Forgings,” Data Sheet from Titanium Metals Corp. of America, Sept. 1966.

  53. Hunter, D. B.; “Metastable Beta Sheet Alloy 8Mo-8V-2Fe-3Al,” Titanium Metals Corp. of America, WAL TR 405/2-14, AD 648244, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, V.C. Hot-salt stress-corrosion of titanium. JOM 23, 40–47 (1971). https://doi.org/10.1007/BF03355696

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355696

Keywords

Navigation