Skip to main content
Log in

On the failure criteria for unidirectional carbon fibre composite materials under compression

  • Published:
International Applied Mechanics Aims and scope

Abstract

In studying shear stresses that develop in the matrix as a consequence of microbuckling of fibres in a unidimensional composite it has been shown that the fibre failure criterion based on the tensile stresses on its convex side is not realistic because it gives shear strains in the surrounding matrix which are beyond the ultimate shear strains measured experimentally. In fact, it is shown that fibres fail under local compression on their concave side before failing in local tension, and that such a compression fibre failure crierion is in agreement with experimental data. Furthermore, the present study confirms that the microbuckling half-wavelength is equal to the kink band width for current carbon fibre/epoxy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Akbarov Z. R. Dzhamalov E. A. Movsumov, “Effect of geometric non-linearity on stress distribution in composites with curved structures,” Mech. of Compos. Mater., 28, No. 6, 581–586 (1992).

    Article  Google Scholar 

  2. S. D. Akbarov A. D. Guz’ Z. R. Dzhamalov E. A. Movsumov, “Solution of problems involving the stress state of composite materials with curved layers in the geometrically nonlinear statement,” Int. Appl. Mech., 28, No. 6, 343–347 (1992).

    Article  ADS  Google Scholar 

  3. P. A Berbinau, “Study of Compression Loading of Composite Laminates”, Ph. D. Thesis. Oregon State University, 1997.

  4. B. Budiansky, “Micromechanics,” Computers and Structures, 16, No. 1, 3–12 (1983).

    Article  MATH  Google Scholar 

  5. I. Chung, Y. A. Weitsman, “Mechanics model for the compressive response of fibre reinforced composites,” Int. J. Solids and Structures, 31, No. 18, 2519–1536 (1994).

    Article  MATH  Google Scholar 

  6. A. G. Evans, W. F. Adler, “Kinking as a mode of structural degradation in carbon fibre composites,” Acta Metall, 26, No. 5, 725–738 (1978).

    Article  Google Scholar 

  7. N. A. Fleck, and B. Budiansky, “Compressive failure of fibre composites due to microbuckling,” Proc. of IUTAM Symposium, 235–273 (1990).

    Google Scholar 

  8. E. G. Guynn O. O. Ochoa, W. L. Bradley, “A parametric study of variables that affect fibre microbuckling initiation in composite laminates: Part 1. Analyses; Part 2. Experiments,” J. Compos. Mater., 26, No. 11, 1594–1627 (1992).

    Article  ADS  Google Scholar 

  9. A. N. Guz’ and I. A. Guz’, “Three-dimensional problems of stability theory of laminated compressible composites,” Teor. Prikl. Mekh., 19, 24–32 (1988).

    Google Scholar 

  10. I. A. Guz’, “Spatial nonaxisymmetric problems of the theory of stability of laminar highly elastic composite materials,” Soviet Appl. Mech., 25, No. 11, 1080–1085 (1989).

    Article  ADS  MATH  Google Scholar 

  11. I. A. Guz’, “Three-dimensional nonaxisymmetric problems of the theory of stability of composite materials with a metallic matrix,” Soviet Appl. Mech., 25, No. 12, 1196–1201 (1989).

    Article  ADS  MATH  Google Scholar 

  12. I. A. Guz’, “Internal instability of laminated composites with a metal matrix,” Mech. of Compos. Mater., 26, No. 6, 762–767 (1990).

    Article  MathSciNet  Google Scholar 

  13. I. A. Guz’, “Study of stability of laminated composites with an aluminum matrix,” Prikl. Mekh., 26, No. 5, 111–114 (1990).

    MathSciNet  Google Scholar 

  14. I. A. Guz’, “Effect of mechanical characteristics of layers on internal instability of composites,” Prikl. Mekh., 27, 110–114 (1991).

    Google Scholar 

  15. I. A. Guz’, “Local instability of laminated compressible composites (three-dimensional problem),” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 49–56 (1991).

    Google Scholar 

  16. I. A. Guz’, “Investigation of the local stability loss in laminar incompressible composite structures,” Mech. of Compos. Mater., 27, No. 1, 23–29 (1990).

    Article  Google Scholar 

  17. J. Haberle, F. A. Matthews, “Micromechanics model for compressive failure of unidirectional fibre-reinforced plastics,” J. Compos. Mater., 28, No. 17, 1618–1639 (1994).

    Article  ADS  Google Scholar 

  18. H. Hawthorne, E. Teghtsoonian, “Axial compression fracture in carbon fibres,” J. Materi. Sci., 10, No. 1, 41–51 (1975).

    Article  ADS  Google Scholar 

  19. H. Hahn, “Analysis of kink band formation under compression,” Proc. of ICCM6, 1, pp. 269–277 (1987).

    Google Scholar 

  20. H. Hahn, and J. Williams, “Compression failure mechanisms in unidirectional composites,” ASTM STP 893, pp. 115–139 (1986).

  21. A. N. Guz’, Ed., “Micromechanics of composite materials: Focus on Ukrainian research,” Appl. Mech. Review, 45, No. 2, 13–101 (1992).

  22. P. M. Moran X. H. Liu, C. F. Shih, “Kink band formation and band broadening in fiber composites under compressive loading,” Acta Metall. and Mater., 43, No. 8, 2943–2958 (1995).

    Article  Google Scholar 

  23. B. Rosen, “Mechanics of composite strengthening,” Fibre Composite Materials, ASM Metals Park, Oltio (1965), pp. 37–75.

  24. C. Schultheisz, A. Waas, “Compressive failure of composites,” Progress in Aerospace Science, 32 No. 1, 1–78 (1996).

    Article  ADS  Google Scholar 

  25. M. Sohi, H. Hahn, and J. Williams, “The effect of resin thoughness and modulus on compressive failure modes of quasi-isotropic graphite/epoxy laminates,” ASTM STP 937, pp. 37–60 (1987).

  26. C. Soutis, “Compressive strength of unidirectional composites: measurement and predictions,” ASTM STP 1242, 168–176 (1997).

  27. C. Soutis, D. Turkmen, “Moisture and temperature effects of the compressive failure of CFRP unidirectional laminates,” J. Compos. Mater., 31, No. 8, 832–848 (1997).

    Article  ADS  Google Scholar 

  28. S. A. Swanson, “Micro-mechanics model for in-situ compression strength of fibre composite laminates,” Trans. ASME. J. Eng. Mater. and Technol., 114, No. 1, 8–12 (1992).

    Article  Google Scholar 

  29. P. Steif, “A model for kinking in fibre composites. I. Fibre breakage via micro-buckling,” Int. J. Solids and Structures, 26, No. 5-6, 549–561 (1990).

    Article  Google Scholar 

  30. J. S. Tomblin E. J. Barbero, L. A. Godoy, “Imperfection sensitivity of fibre microbuckling in elastic nonlinear polymer-matrix composites,” Int. J. Solids and Structures, 34, No. 13, 1667–1679 (1997).

    Article  MATH  Google Scholar 

  31. C. Weaver, J. Williams, “Deformation of a carbon-epoxy composite under hydrostatic pressure,” J. Mater. Sci., 10, 1323–1333 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 35, No. 5, pp. 40–45, May, 1999.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berbinau, P., Soutis, C. & Guz, I.A. On the failure criteria for unidirectional carbon fibre composite materials under compression. Int Appl Mech 35, 462–468 (1999). https://doi.org/10.1007/BF03355404

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355404

Keywords

Navigation