Skip to main content
Log in

Critical scaling laws and a classical equation of state

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper we present a method which modifies a classical equation of state by incorporating the nonclassical critical behavior. As an example we have applied our procedure to the Carnahan-Starling-DeSantis (CSD) equation of state. The resulting equation reproduces the universal scaling behavior near the critical point and reduces to the universal ideal-gas behavior at low densities. We show that the renormalized CSD equation yields an improved and consistent representation of both mechanical and caloric thermodynamic properties. In addition, the suppression of the critical temperature due to the critical fluctuations is clearly demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Sengers and J. M. H. Levelt Sengers, Annu. Rev. Phys. Chem. 37:1R9 (1986).

    Article  Google Scholar 

  2. J. V. Sengers, in Supercritical Fluids: Fundamentals for Application, F. Kiran and J. M. H. Levelt Sengers, eds. (Kluwer, Dordrecht, The Netherlands), p. 231.

  3. Z. Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Phys. Rev. A 42:4470 (1990).

    Article  ADS  Google Scholar 

  4. R. DeSantis, F. Gironi, and L. Marrelli, Ind. Eng. Chem. Fundam. 15:183 (1976).

    Article  Google Scholar 

  5. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51:635 (1969); 53:600 (1970)

    Article  ADS  Google Scholar 

  6. G. Morrison and M. O. McLinden, NBS Technical Note 1226: Application of a Hard Sphere Equation of State to Refrigerants and Refrigerant Mixtures (U.S. Government Printing Office, Washington, DC, 1986).

    Google Scholar 

  7. G. A. Chapela and J. S. Rawlinson, J. Chem. Soc. Faraday Trans. I 70:584 (1974).

    Article  Google Scholar 

  8. G. X. Jin, Ph.D. thesis (University of Maryland, College Park, MD, 1993).

    Google Scholar 

  9. G. X. Jin, J. V. Sengers, and S. Tang, to be published.

  10. S. Tang, J. V. Sengers, and Z. Chen, Physica A 179:344 (1991).

    Article  ADS  Google Scholar 

  11. C. Baroncini, G. Giuliani, M. Pacetti, and F. Polonara, Proceedings of the Meeting of Commission B1, International Institute of Refrigeration, Herzlia, Israel (1990), p. 83

    Google Scholar 

  12. R. S. Basu and D. P. Wilson, Int. J. Thermophys. 10:591 (1989).

    Article  ADS  Google Scholar 

  13. R. Doering and H. Buchwald, DKV-Tagungsber. 16:225 (1989).

    Google Scholar 

  14. C.-C. Piao, H. Sato, and K. Watanabe, ASHRAE Trans. 96:132 (1990).

    Google Scholar 

  15. Z.-Y. Qian, H. Sato, and K. Watanable, Fluid Phase Equil. 78:323 (1992).

    Article  Google Scholar 

  16. R. Tillner-Roth and H. D. Baehr, J. Chem. Thermodyn. 24:413 (1992); 25:277 (1991).

    Article  Google Scholar 

  17. L. A. Weber, Int. J. Thermophys. 10:617 (1989).

    Article  ADS  Google Scholar 

  18. M.-S. Zhu, Y.-D. Fu, and L.-Z. Han, Fluid Phase Equil. 80:149 (1992).

    Article  Google Scholar 

  19. H. D. Baehr and R. Tillner-Roth, J. Chem. Thermodyn. 23:1063 (1991).

    Article  Google Scholar 

  20. Y. Kabata, S. Tanikawa, M. Uematsu, and K. Watanabe, Int. J. Thermophys. 10:605 (1989).

    Article  ADS  Google Scholar 

  21. Y. Maezawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 35:225 (1990).

    Article  Google Scholar 

  22. G. Morrison and D. K. Ward, Fluid Phase Equil. 62:65 (1991).

    Article  Google Scholar 

  23. V. G. Niesen, L. J. Van Poolen, and S. L. Outcalt, Fluid Phase Equil. 97:81 (1994).

    Article  Google Scholar 

  24. A. R. H. Goodwm, D. R. Defibaugh, and L.A. Weber, Int. J. Thermophys. 13:837 (1990).

    Article  ADS  Google Scholar 

  25. H. Kubota, T. Yamashita, Y. Tanaka, and T. Makita, Int. J. Thermophys. 10:629 (1989).

    Article  ADS  Google Scholar 

  26. J. W. Magee and J. B. Howley, Int. J. Refrig. 15:362 (1992).

    Article  Google Scholar 

  27. M.-S. Zhu, J. Wu, and Y.-D. Fu, Fluid Phase Equil. 80:99 (1992).

    Article  Google Scholar 

  28. A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 93:2741 (1990).

    Article  ADS  Google Scholar 

  29. T. Hozumi, T. Koga, H. Sato, and K. Watanabe, Int. J. Thermophys. 14:739 (1993).

    Article  ADS  Google Scholar 

  30. M.-S. Zhu, L.-Z. Han, K.-Z. Zhang, and T. Y. Zhou, Int. J. Thermophys. 14:1039 (1993).

    Article  ADS  Google Scholar 

  31. H. J. R. Guedes and J. A. Zollweg, Int. J. Refrig. 15:381 (1992).

    Article  Google Scholar 

  32. R. Krauss, J. Luettmer-Strathmann, J. V. Sengers, and K. Stephan, Int. J. Thermophys. 14:951 (1993).

    Article  ADS  Google Scholar 

  33. R. L. Rusby, J. Chem. Hermodyn. 23:1153 (1991).

    Article  Google Scholar 

  34. G. Morrison, M. O. McLinden, and M. L. Huber, Users’ Guide: NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixture Database, Version 3.0 (National Institute of Standards and Technology, Gaithersburg, MD, 1991).

    Google Scholar 

  35. S. Tang, G. X. Jin, and J. V. Sengers, Int. J. Thermophys. 12:515 (1991).

    Article  ADS  Google Scholar 

  36. P. C. Albright, J. V. Sengers, J. F. Nicoll, and M. Ley-Koo, Int. J. Thermophys. 7:75 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Pelt, A., Jin, G.X. & Sengers, J.V. Critical scaling laws and a classical equation of state. Int J Thermophys 15, 687–697 (1994). https://doi.org/10.1007/BF03354059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354059

Key words

Navigation