Skip to main content
Log in

Estimates of Critical Quantities from an Expansion in Mass: Ising Model on the Simple Cubic Lattice

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the Ising model on the simple cubic lattice, we describe the inverse temperature β and other quantities relevant for the computation of critical quantities in terms of a dimensionless squared mass M. The critical behaviors of those quantities are represented by the linear differential equations with constant coefficients which are related to critical exponents. We estimate the critical temperature and exponents via an expansion in the inverse powers of the mass under the use of δ-expansion. The critical inverse temperature β c is estimated first in unbiased manner and then critical exponents are also estimated in biased and unbiased self-contained way including ω, the correction-to-scaling exponent, ν, η, and γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. For example, when the site j is on the diagonal direction with j = J(1,1,1), it is found at the leading order that \(<s_{0}s_{j}>\sim \frac {(3J)!}{(J!)^{3}}(\tanh \beta )^{3J}\). At large enough J, \(\lim _{J\to \infty }\left (\frac {(3J)!}{(J!)^{3}}\right )^{1/3J}=3\) and < s 0 s j > ∼ exp[3J log3β]. Thus we obtain \(\xi \sim \sqrt {3}\log (3M)\).

  2. In addition to the group of contributions τ γ(1 + c o n s t×τ 𝜃+⋯ ), Aharony and Fisher found the presence of the group labelled by τ 1−α = τ γτ γ + 1−α where α stands for the exponent of specific heat. See A. Aharony and M. E. Fisher, Phys. Rev. B 27, 4394 (1983). It is however considered just as the correction high enough to be omitted in this analysis (α is positive but small).

References

  1. K.G. Wilson, Phys. Rev. D. 10, 2445 (1974)

    Article  ADS  Google Scholar 

  2. J.B. Kogut, Rev. Mod. Phys. 51, 659 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Yamada, Phys. Rev. D. 76, 045007 (2007)

    Article  ADS  Google Scholar 

  4. H. Yamada, Phys. Rev. D. 84, 105025 (2011)

    Article  ADS  Google Scholar 

  5. A. Guttmann, J. Phys. A 20, 1839 (1987); J. Phys. A. 20, 1855 (1987)

    MathSciNet  ADS  Google Scholar 

  6. P. Butera, M. Comi, Phys. Rev. B. 56, 8212 (1997)

    Article  ADS  Google Scholar 

  7. A.J. Guttmann, G.S. Joyce, J. Phys. A. 5, L81 (1972)

    Article  ADS  Google Scholar 

  8. D.L. Hunter, G.A. Baker, Phys. Rev. B 7, 3346, 3377 (1973); B. 19, 3808 (1979)

    Google Scholar 

  9. M.E. Fisher, H. Au-Yang, J. Phys. A 12, 1677 (1979) and A. 13, 1517 (1980)

    MathSciNet  Google Scholar 

  10. J.J. Rehr, A.J. Guttmann, G.S. Joyce. J. Phys. A. 13, 1587 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. H. Yamada, Phys. Rev. E. 90, 032139 (2014)

    Article  ADS  Google Scholar 

  12. H. Yamada, J. Phys. G. 36, 025001 (2009)

    Article  ADS  Google Scholar 

  13. A. Pelissetto, E. Vicari, Phys. Rept. 368, 549 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. H. Arisue, T. Fujiwara, Phys. Rev. E. 67, 066109 (2003)

    Article  ADS  Google Scholar 

  15. Y. Deng, H.W.J. Blöte, Phys. Rev. E. 68, 036125 (2003)

    Article  ADS  Google Scholar 

  16. C. Bervillier, A. Juttner, D.F. Litim. Nucl. Phys. B. 783, 213 (2007)

    Article  MATH  ADS  Google Scholar 

  17. A.A. Pogorelov, I.M. Suslov, J. Exp. Theor. Phys. 106, 1118 (2008)

    Article  ADS  Google Scholar 

  18. M. Hasenbusch, Phys. Rev. B. 82, 174433 (2010)

    Article  ADS  Google Scholar 

  19. D.F. Litim, D. Zappalà, Phys. Rev. D. 83, 085009 (2011)

    Article  ADS  Google Scholar 

  20. A. Gordillo-Guerrero, R. Kenna, J.J. Ruiz-Lorenzo, J. Stat. Mech., P09019 (2011)

  21. F. Gliozzi, A. Rago, JHEP. 42, 10 (2014)

    Google Scholar 

  22. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, J. Stat. Phys. 157, 869 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Harada, arXiv:1410.3622 [cond-matt.stat-mech] (2014)

  24. H.W.J. Blöte, L.N. Shchur, A.L. Talapov, Int. J. Mod. Phys. C. 10, 137 (1999)

    Article  Google Scholar 

  25. N. Ito, K. Hukushima, K. Ogawa, Y. Ozeki, J. Phys. Soc. Japan. 69, 1931 (2000)

    Article  ADS  Google Scholar 

  26. P. Butera, M. Comi, J. Statist. Phys. 109, 311 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. F. Wegner, Phys. Rev. B. 5, 4529 (1972)

    Article  ADS  Google Scholar 

  28. H.B. Tarko, M.E. Fisher, Phys. Rev. B. 11, 1217 (1975)

    Article  ADS  Google Scholar 

  29. E.W. Montroll, R.B. Potts, J.C. Ward, J. Math. Phys. 4, 308 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  30. P.M. Stevenson, Phys. Rev. D. 23, 2916 (1981)

    Article  ADS  Google Scholar 

  31. J-L. Kneur, A. Neveu, M.B. Pinto, Phys. Rev. A. 69, 053624 (2004)

    Article  ADS  Google Scholar 

  32. M.E. Fisher, J. Math. Phys. 5, 944 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Yamada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, H. Estimates of Critical Quantities from an Expansion in Mass: Ising Model on the Simple Cubic Lattice. Braz J Phys 45, 584–603 (2015). https://doi.org/10.1007/s13538-015-0353-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0353-8

Keywords

Navigation