Advertisement

Nano-Micro Letters

, Volume 3, Issue 2, pp 86–90 | Cite as

One-Step Cutting of Multi-Walled Carbon Nanotubes Using Nanoscissors

  • Jiang Zhao
  • Ping Liu
  • Zhi Yang
  • Peng Zhou
  • Yafei Zhang
Open Access
Article

Abstract

A novel, simple and effective one-step method has been developed to cut the conventional long and entangled multi-walled carbon nanotubes (MWCNTs) with nanoscissors. The cutting process was carried out by the interactive collision of CNTs with the silicon carbide particles adhered on the abrasive papers. The final cut nanotubes have an average length of 200∼300 nm. The statistical length distribution result indicates that cutting by this method achieves high cutting efficiency for short duration of 2 min. Shortened nanotubes are found to be easily dispersed into aqueous and ethanol solutions. The cut MWCNTs/copper composite thin film fabricated by combined electrophoresis and electroplating techniques reveals that MWCNTs after cutting are well distributed and adhered to the Cu matrix. This method is not only fast and efficient but also no chemical waste, which will expand many potential applications of CNTs.

Keywords

Cutting MWCNTs Nanoscissors Dispersion 

Reference

  1. [1]
    S. Iijima, Nature 354, 56 (1991). http://dx.doi.org/10.1038/354056a0CrossRefGoogle Scholar
  2. [2]
    J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science 280, 1253 (1998). http://dx.doi.org/10.1126/science.280.5367.1253CrossRefGoogle Scholar
  3. [3]
    K. Chu, H. Guo, C. C. Jia, F. Z. Yin, X. M. Zhang, X. B. Liang and H. Chen, Nanoscale Res. Lett. 5, 868 (2010). http://dx.doi.org/10.1007/s11671-010-9577-2CrossRefGoogle Scholar
  4. [4]
    Z. Li, L. Wang, Y. Su, P. Liu and Y. Zhang, Nano-Micro Lett. 1, 9 (2010).CrossRefGoogle Scholar
  5. [5]
    G. Kalita, S. Adhikari, H. R. Aryal, M. Umeno, R. Afre, T. Soga and M. Sharon, Appl. Phys. Lett. 92, 123508 (2008). http://dx.doi.org/10.1063/1.2903493CrossRefGoogle Scholar
  6. [6]
    S. Wang, R. Liang, B. Wang and C. Zhang, Carbon 47, 53 (2009). http://dx.doi.org/10.1016/j.carbon.2008.08.024CrossRefGoogle Scholar
  7. [7]
    Z. Zhang, Z. Sun and Y. Chen, Appl. Surf. Sci. 253, 3292 (2007). http://dx.doi.org/10.1016/j.apsusc.2006.07.043CrossRefGoogle Scholar
  8. [8]
    H. M. Cheng, Q. H. Yang and C. Liu, Carbon 39, 1447 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00306-7CrossRefGoogle Scholar
  9. [9]
    D. Ogrin, R. E. Anderson, R. Colorado, B. Maruyama, M. J. Pender, V. C. Moore, S. T. Pheasant, L. McJilton, H. K. Schmidt, R. H. Hauge, W. E. Billups, J. M. Tour, R. E. Smalley and A. R. Barron, J. Phys. Chem. C 111, 17804 (2007). http://dx.doi.org/10.1021/jp0712506CrossRefGoogle Scholar
  10. [10]
    I. Stepanek, G. Maurin, P. Bernier, J. Gavillet, A. Loiseau, R. Edwards and O. Jaschinski, Chem. Phys. Lett. 331, 125 (2000). http://dx.doi.org/10.1016/S0009-2614(00)01163-5CrossRefGoogle Scholar
  11. [11]
    G. Maurin, I. Stepanek, P. Bernier, J. F. Colomer, J. B. Nagy and F. Henn, Carbon 39, 1273 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00250-5CrossRefGoogle Scholar
  12. [12]
    Amorphous and Nanostructured Carbon, Materials Research Society, Warrendale, 2000.Google Scholar
  13. [13]
    F. Liu, X. Zhang, J. Cheng, J. Tu, F. Kong, W. Huang and C. Chen, Carbon 41, 2527 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00302-6CrossRefGoogle Scholar
  14. [14]
    N. Pierard, A. Fonseca, J. F. Colomer, C. Bossuot, J. M. Benoit, G. Van Tendeloo, J. P. Pirard and J. B. Nagy, Carbon 42, 1691 (2004). http://dx.doi.org/10.1016/j.carbon.2004.02.031CrossRefGoogle Scholar
  15. [15]
    K. C. Park, M. Fujishige, K. Takeuchi, S. Arai, S. Morimoto and M. Endo, J. Chem. Solids 69, 2481 (2008). http://dx.doi.org/10.1016/j.jpcs.2008.05.006CrossRefGoogle Scholar
  16. [16]
    S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa and K. D. Sams, Nano Lett. 3, 1007 (2003). http://dx.doi.org/10.1021/nl034219yCrossRefGoogle Scholar
  17. [17]
    J. Lee, T. Jeong, J. Heo, S. H. Park, D. Lee, J. B. Park, H. Han, Y. Kwon, I. Kovalev, S. M. Yoon, J. Y. Choi, Y. Jin, J. M. Kim, K. H. An, Y. H. Lee and S. Yu, Carbon 44, 2984 (2006). http://dx.doi.org/10.1016/j.carbon.2006.05.045CrossRefGoogle Scholar
  18. [18]
    F. Banhart, J. X. Li and M. Terrones, Small 1, 953 (2005). http://dx.doi.org/10.1002/smll.200500162CrossRefGoogle Scholar
  19. [19]
    U. Rauwald, J. Shaver, D. A. Klosterman, Z. Y. Chen, C. Silvera-Batista, H. K. Schmidt, R. H. Hauge, R. E. Smalley and K. J. Ziegler, Carbon 47, 178 (2009). http://dx.doi.org/10.1016/j.carbon.2008.09.043CrossRefGoogle Scholar
  20. [20]
    J. Y. Li and Y. F. Zhang, Appl. Surf. Sci. 252, 2944 (2006). http://dx.doi.org/10.1016/j.apsusc.2005.04.039CrossRefGoogle Scholar
  21. [21]
    M. Q. Tran, C. Tridech, A. Alfrey, A. Bismarck and M. S. P. Shaffer, Carbon 45, 2341 (2007). http://dx.doi.org/10.1016/j.carbon.2007.07.012CrossRefGoogle Scholar
  22. [22]
    Z. Y. Chen, K. J. Ziegler, J. Shaver, R. H. Hauge and R. E. Smalley, J. Phys. Chem. B 110, 11624 (2006). http://dx.doi.org/10.1021/jp057494cCrossRefGoogle Scholar
  23. [23]
    Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley and J. L. Margrave, Nano Lett. 2, 1009 (2002). http://dx.doi.org/10.1021/nl025675+CrossRefGoogle Scholar
  24. [24]
    A. L. Elias, A. R. Botello-Mendez, D. Meneses-Rodriguez, V. J. Gonzalez, D. Ramirez-Gonzalez, L. Ci, E. Munoz-Sandoval, P. M. Ajayan, H. Terrones and M. Terrones, Nano Lett. 10, 366 (2010). http://dx.doi.org/10.1021/nl901631zCrossRefGoogle Scholar
  25. [25]
    P. Liu, D. Xu, Z. J. Li, B. Zhao, E. S. W. Kong and Y. F. Zhang, Microelectron. Eng. 85, 1984 (2008). http://dx.doi.org/10.1016/j.mee.2008.04.046CrossRefGoogle Scholar
  26. [26]
    Z. Sun, V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne and J. N. Coleman, J. Phys. Chem. C 112, 10692 (2008). http://dx.doi.org/10.1021/jp8021634CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2011

Authors and Affiliations

  • Jiang Zhao
    • 1
  • Ping Liu
    • 2
  • Zhi Yang
    • 1
  • Peng Zhou
    • 1
  • Yafei Zhang
    • 1
  1. 1.Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and TechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Zhongyuan University of TechnologyZhengzhouPeople’s Republic of China

Personalised recommendations