Nano-Micro Letters

, Volume 3, Issue 2, pp 86–90 | Cite as

One-Step Cutting of Multi-Walled Carbon Nanotubes Using Nanoscissors

  • Jiang Zhao
  • Ping Liu
  • Zhi Yang
  • Peng Zhou
  • Yafei Zhang
Open Access


A novel, simple and effective one-step method has been developed to cut the conventional long and entangled multi-walled carbon nanotubes (MWCNTs) with nanoscissors. The cutting process was carried out by the interactive collision of CNTs with the silicon carbide particles adhered on the abrasive papers. The final cut nanotubes have an average length of 200∼300 nm. The statistical length distribution result indicates that cutting by this method achieves high cutting efficiency for short duration of 2 min. Shortened nanotubes are found to be easily dispersed into aqueous and ethanol solutions. The cut MWCNTs/copper composite thin film fabricated by combined electrophoresis and electroplating techniques reveals that MWCNTs after cutting are well distributed and adhered to the Cu matrix. This method is not only fast and efficient but also no chemical waste, which will expand many potential applications of CNTs.


Cutting MWCNTs Nanoscissors Dispersion 


  1. [1]
    S. Iijima, Nature 354, 56 (1991). Scholar
  2. [2]
    J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science 280, 1253 (1998). Scholar
  3. [3]
    K. Chu, H. Guo, C. C. Jia, F. Z. Yin, X. M. Zhang, X. B. Liang and H. Chen, Nanoscale Res. Lett. 5, 868 (2010). Scholar
  4. [4]
    Z. Li, L. Wang, Y. Su, P. Liu and Y. Zhang, Nano-Micro Lett. 1, 9 (2010).CrossRefGoogle Scholar
  5. [5]
    G. Kalita, S. Adhikari, H. R. Aryal, M. Umeno, R. Afre, T. Soga and M. Sharon, Appl. Phys. Lett. 92, 123508 (2008). Scholar
  6. [6]
    S. Wang, R. Liang, B. Wang and C. Zhang, Carbon 47, 53 (2009). Scholar
  7. [7]
    Z. Zhang, Z. Sun and Y. Chen, Appl. Surf. Sci. 253, 3292 (2007). Scholar
  8. [8]
    H. M. Cheng, Q. H. Yang and C. Liu, Carbon 39, 1447 (2001). Scholar
  9. [9]
    D. Ogrin, R. E. Anderson, R. Colorado, B. Maruyama, M. J. Pender, V. C. Moore, S. T. Pheasant, L. McJilton, H. K. Schmidt, R. H. Hauge, W. E. Billups, J. M. Tour, R. E. Smalley and A. R. Barron, J. Phys. Chem. C 111, 17804 (2007). Scholar
  10. [10]
    I. Stepanek, G. Maurin, P. Bernier, J. Gavillet, A. Loiseau, R. Edwards and O. Jaschinski, Chem. Phys. Lett. 331, 125 (2000). Scholar
  11. [11]
    G. Maurin, I. Stepanek, P. Bernier, J. F. Colomer, J. B. Nagy and F. Henn, Carbon 39, 1273 (2001). Scholar
  12. [12]
    Amorphous and Nanostructured Carbon, Materials Research Society, Warrendale, 2000.Google Scholar
  13. [13]
    F. Liu, X. Zhang, J. Cheng, J. Tu, F. Kong, W. Huang and C. Chen, Carbon 41, 2527 (2003). Scholar
  14. [14]
    N. Pierard, A. Fonseca, J. F. Colomer, C. Bossuot, J. M. Benoit, G. Van Tendeloo, J. P. Pirard and J. B. Nagy, Carbon 42, 1691 (2004). Scholar
  15. [15]
    K. C. Park, M. Fujishige, K. Takeuchi, S. Arai, S. Morimoto and M. Endo, J. Chem. Solids 69, 2481 (2008). Scholar
  16. [16]
    S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa and K. D. Sams, Nano Lett. 3, 1007 (2003). Scholar
  17. [17]
    J. Lee, T. Jeong, J. Heo, S. H. Park, D. Lee, J. B. Park, H. Han, Y. Kwon, I. Kovalev, S. M. Yoon, J. Y. Choi, Y. Jin, J. M. Kim, K. H. An, Y. H. Lee and S. Yu, Carbon 44, 2984 (2006). Scholar
  18. [18]
    F. Banhart, J. X. Li and M. Terrones, Small 1, 953 (2005). Scholar
  19. [19]
    U. Rauwald, J. Shaver, D. A. Klosterman, Z. Y. Chen, C. Silvera-Batista, H. K. Schmidt, R. H. Hauge, R. E. Smalley and K. J. Ziegler, Carbon 47, 178 (2009). Scholar
  20. [20]
    J. Y. Li and Y. F. Zhang, Appl. Surf. Sci. 252, 2944 (2006). Scholar
  21. [21]
    M. Q. Tran, C. Tridech, A. Alfrey, A. Bismarck and M. S. P. Shaffer, Carbon 45, 2341 (2007). Scholar
  22. [22]
    Z. Y. Chen, K. J. Ziegler, J. Shaver, R. H. Hauge and R. E. Smalley, J. Phys. Chem. B 110, 11624 (2006). Scholar
  23. [23]
    Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley and J. L. Margrave, Nano Lett. 2, 1009 (2002). Scholar
  24. [24]
    A. L. Elias, A. R. Botello-Mendez, D. Meneses-Rodriguez, V. J. Gonzalez, D. Ramirez-Gonzalez, L. Ci, E. Munoz-Sandoval, P. M. Ajayan, H. Terrones and M. Terrones, Nano Lett. 10, 366 (2010). Scholar
  25. [25]
    P. Liu, D. Xu, Z. J. Li, B. Zhao, E. S. W. Kong and Y. F. Zhang, Microelectron. Eng. 85, 1984 (2008). Scholar
  26. [26]
    Z. Sun, V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne and J. N. Coleman, J. Phys. Chem. C 112, 10692 (2008). Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2011

Authors and Affiliations

  • Jiang Zhao
    • 1
  • Ping Liu
    • 2
  • Zhi Yang
    • 1
  • Peng Zhou
    • 1
  • Yafei Zhang
    • 1
  1. 1.Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and TechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Zhongyuan University of TechnologyZhengzhouPeople’s Republic of China

Personalised recommendations