Skip to main content
Log in

The effect of reducing proximal tubular fluid delivery on the rate of filtration of single nephrons

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The rate of delivery of tubular fluid from the proximal tubule (PT) is thought to reset nephron filtration rate (SNGFR). In micropuncture experiments in rats we tested this hypothesis by reducing the efflux from the PT by simultaneously “double collecting” (DC) tubular fluid from the early distal tubule (DT) and from the last convolution of the PT of the same nephrons. SNGFR measured by total collection of tubular fluid was 34±3 nl/min at the DT and 34±3 nl/min at the PT (p>0.97, n=42). The simultaneous collection from proximal and distal sampling site was performed between these two paired measurements. It yielded an average SNGFR of 40±3 nl/min (p<0.02). This may be due to the collection, at the distal site, of the extra amount of inulin stored between distal and proximal pipette, prior to starting the aspiration of tubular fluid. Since this error would decrease in longer collections, the difference in SNGFR between single and double collections was plotted against the duration of collections. In fact it was negatively correlated with the sampling time (p<0.01), indicating no difference in SNGFRs for collections >4 minutes. Reduction and complete interruption of the delivery of native proximal tubular fluid to the Macula Densa does not seem to influence the measurement of SNGFR. Filtration rate is not significantly different when measured within few minutes at the DT and PT of the same nephrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schnermann J., Horster M., Levine D.Z. The influence of sampling technique on the micro-puncture determination of GFR and reabsorptive characteristics of single rat proximal tubules. Pflugers Arch. 309: 48, 1969.

    Article  PubMed  CAS  Google Scholar 

  2. Schnermann J., Davis J.M., Wunderlich P., Levine D.Z., Horster M. Technical problems in the micropuncture determination of nephron filtration rate and their functional implications. Pflugers Arch. 329: 307, 1971.

    Article  PubMed  CAS  Google Scholar 

  3. Tanner G.A. Nephron obstruction and tubuloglomerular feedback. Kidney Int. 22(Suppl 12): S213, 1982.

    Google Scholar 

  4. Kirchner K.A. Prostaglandin inhibitors alter loop segment chloride uptake during furosemide diuresis. Am. J. Physiol. 248: F698, 1985.

    PubMed  CAS  Google Scholar 

  5. Shirley D.G., Walter S J. Acute and chronic changes in renal function following unilateral nephrectomy. Kidney Int. 40: 62, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Xie M.H., Liu F.Y., Wong P.C., Timmermans P.B.M.W.M., Cogan M.G. Proximal nephron and renal effects of DuP 753, a nonpeptide angiotensin II receptor antagonist. Kidney Int. 38: 473, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Bartoli E., Earley L.E. Measurements of nephron filtration rate in the rat with and without occlusion of the proximal tubule. Kidney Int. 3: 372, 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Steven K. Influence of nephron GFR on proximal reabsorption in pentobarbital anesthetized rats. Kidney Int. 5: 204, 1974.

    Article  PubMed  CAS  Google Scholar 

  9. Bartoli E., Romano G., Favret G. Micropuncture and clearance measurements of segmental reabsorption by the rat nephron. Nephrol. Dial. Transplant. 11: 275, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. Romano G., Favret G., Bartoli E. Micropuncture study of the effect of furosemide on proximal and distal tubules of the rat nephron. Renal Physiol. Biochem. 18: 209, 1995.

    PubMed  CAS  Google Scholar 

  11. Schnermann J., Ploth D.W., Hermle M. Activation of tubuloglomerular feedback by chloride transport. Pflugers Arch. 362: 229, 1980.

    Article  Google Scholar 

  12. Briggs J.P., Schnermann J., Wright F.S. Failure of tubular fluid osmolarity to affect feedback regulation of glomerular filtration. Am. J. Physiol. 239: F427, 1980.

    PubMed  CAS  Google Scholar 

  13. Thurau K., Gruner A., Mason J., Dahlheim H. Tubular signal for the renin activity in the juxtaglomerular apparatus. Kidney Int. 22(Suppl. 12): S55, 1982.

    Google Scholar 

  14. Wright F.S., Briggs J.P. Feedback control of glomerular blood flow, pressure and filtration rate. Physiol. Rev. 59: 958, 1979.

    PubMed  CAS  Google Scholar 

  15. Ito S., Carretero O.A. Macula densa control of glomerular hemodynamics. Kidney Int. 39(Suppl. 32): S83, 1991.

    Google Scholar 

  16. Bartoli E., Earley L.E. The relative contributions of reabsorptive rate and redistributed nephron filtration rate to changes in proximal tubular fractional reabsorption during acute saline infusion and aortic constriction in the rat. J. Clin. Invest. 50: 2191, 1971.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Bartoli E., Romano G., Favret G. Segmental reabsorption measured by micropuncture and clearance methods during hypertonic Na infusion in the rat. Neph. Dial. Transpl. 11: 1996, 1996.

    Article  CAS  Google Scholar 

  18. Munkacsi L., Palkovits M. Study on the renal pyramid, loops of Henle and percentage distribution of their segments in mammals living in desert, semidesert and water-rich environment Acta Biol. Acad. Sci. Hung. 17: 89, 1966.

    Google Scholar 

  19. Romano G., Federico E., Favret G., Bartoli E. Microinjection studies on the effect of furosemide on the rat nephron. Kidney & Blood Pressure Research 20: 240, 1997.

    Article  CAS  Google Scholar 

  20. Wright F.S., Schnermann J. Interference with feedback control of glomerular filtration rate by furosemide, triflocin and cyanide. J. Clin. Invest. 53: 1695, 1974.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Blantz R.C., Israelit A.H., Rector F.C. Jr, Seldin D.W. Relation of distal tubular NaCI delivery and glomerular hydrostatic pressure. Kidney Int. 2: 22, 1972.

    Article  PubMed  CAS  Google Scholar 

  22. Morgan T. A microperfusion study of influence of macula densa on glomerular filtration rate. Am. J. Physiol. 220: 186, 1971.

    PubMed  CAS  Google Scholar 

  23. Bartoli E., Conger J.D., Earley L.E. Effect of intraluminal flow in proximal tubular reab-sorption. J. Clin. Invest. 52: 843, 1973.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Moreno A.H., Katz A.I., Gold L.D., Reddy R.V. Mechanics of distension of dog veins and other very thin-walled tubular structures. Circ. Res. 27: 1069, 1970.

    Article  PubMed  CAS  Google Scholar 

  25. Thomsen K., Holstein-Rathlou N.H., Leyssac P.P. Comparison of three measures of proximal tubular reabsorption: Li clearance, occlusion time, and micropuncture. Am. J. Physiol. 241: F348, 1981.

    PubMed  CAS  Google Scholar 

  26. Burke T.J., Duchin K.L. Glomerular filtration during furosemide diuresis in the dog. Kidney Int. 16: 672, 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Thomson S.C., Blantz R.C. Homeostatic efficiency of tubuloglomerular feedback in hydropenia euvolemia, and acute volume expansion. Am. J. Physiol. 33: F930, 1993.

    Google Scholar 

  28. Holstein-Rathlou N.H. A closed-loop analysis of the tubulo-glomerular feedback mechanism. Am. J. Physiol. 261: F880, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, G., Favret, G., Federico, E. et al. The effect of reducing proximal tubular fluid delivery on the rate of filtration of single nephrons. J Endocrinol Invest 21, 245–250 (1998). https://doi.org/10.1007/BF03347310

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347310

Key-words

Navigation