Skip to main content
Log in

Endocrine tumors: The evolving role of positron emission tomography in diagnosis and management

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Endocrine tumors comprise a range of benign and malignant conditions that produce a spectrum of clinical symptoms and signs depending on the specific hormones they produce. The symptoms and presentations of these tumors are often independent of their size and location. Because of their expression of cell membrane receptors or production of specific types of hormones or peptides, endocrine tumors can be identified with functional radionuclide imaging much more readily compared to standard cross-sectional imaging. In recent years, 18F-fluoro-deoxy-D-glucose positron emission tomography (18F-FDG-PET) has emerged as a useful tool for diagnosing and assessing many tumors. In this review we describe how PET, using 18F-FDG and other radiopharmaceuticals can be useful in the diagnosis and management of a wide range of endocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan S, Lloyd C, Szyszko T, Win Z, Rubello D, Al-Nahhas A. PET imaging in endocrine tumours. Minerva Endocrinol 2008, 33: 41–52.

    CAS  PubMed  Google Scholar 

  2. Markou A, Manning P, Kaya B, Datta SN, Bomanji JB, Conway GS. 18F fluoro-2-deoxy-D-glucose (18F FDG) positron emission tomography imaging of thymic carcinoid tumor presenting with recurrent Cushing’s syndrome. Eur J Endocrinol 2005, 152: 521–5.

    Article  CAS  PubMed  Google Scholar 

  3. Pacak K, Eisenhofer G, Goldstein DS. Functional imaging of endocrine tumors: role of positron emission tomography. Endocr Rev 2004, 25: 568–80.

    Article  PubMed  Google Scholar 

  4. Chong S, Lee KS, Kim HY, et al. Integrated PET-CT for the characterization of adrenal gland lesions in cancer patients: diagnostic efficacy and interpretation pitfalls. Radiographics 2006, 26: 1811–26.

    Article  PubMed  Google Scholar 

  5. Leboulleux S, Dromain C, Bonniaud G, et al. Diagnostic and prognostic value of 18-fluorodeoxyglucose positron emission tomography in adrenocortical carcinoma: a prospective comparison with computed tomography. J Clin Endocrinol Metab 2006, 91: 920–5.

    Article  CAS  PubMed  Google Scholar 

  6. Blake MA, Slattery JM, Kalra MK, et al. Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy initial experience. Radiology 2006, 238: 970–7.

    Article  PubMed  Google Scholar 

  7. Bergström M, Juhlin C, Bonasera T A, Sundin A, Rastad J, Akerstrom G, Långström B. PET Imaging of adrenal cortical tumors with the 11B-hydroxylasetracer 11C-metomidate. J Nucl Med 2000, 41: 275–82; Comment in J Nucl Med 2000, 41: 1933–4.

    PubMed  Google Scholar 

  8. Kumar R, Abass A, Fanti S. Adrenocortical positron emission tomography/PET-CT imaging. PET Clinics 2007, 2: 331–9.

    Article  CAS  Google Scholar 

  9. Wadsak W, Mitterhauser M, Rendl G, et al. 18F FETO for adrenocortical PET imaging: a pilot study in healthy volunteers. Eur J Nucl Med Mol Imaging 2006, 33: 669–72.

    Article  PubMed  Google Scholar 

  10. Blake M, Kalra M, Maher M, et al. Pheochromocytoma: an imaging chameleon. Radiographics 2004, 24: S87–99.

    Article  PubMed  Google Scholar 

  11. Goldstein DS, Eisenhofer G, Flynn JA, Wand G, Pacak K. Diagnosis and localization of phaeochromocytoma. Hypertension 2004, 43: 907–10.

    Article  CAS  PubMed  Google Scholar 

  12. Sohaib SA, Rockall AG, Reznek RH. Imaging functional adrenal disorders. Best Pract Res Clin Endocrinol Metab 2005, 19: 293–310.

    Article  CAS  PubMed  Google Scholar 

  13. Bombardieri E, Seregni E, Villano C, Chiti A, Bajetta E. Position of nuclear medicine techniques in the diagnostic work-up of neuroendocrine tumors. Q J Nucl Med Mol Imaging 2004, 48: 150–63.

    CAS  PubMed  Google Scholar 

  14. Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer 2007, 14: 569–85.

    Article  CAS  PubMed  Google Scholar 

  15. Ilias I, Sahdev A, Reznek RH, Grossman AB, Pacak K. The optimal imaging of adrenal tumours: a comparison of different methods. Endoc Relat Cancer 2007, 14: 587–99.

    Article  Google Scholar 

  16. Mottaghy FM, Reske SN. Functional imaging of neuroendocrine tumours with PET. Pituitary 2006, 9: 237–42.

    Article  CAS  PubMed  Google Scholar 

  17. Trampal C, Engler H, Juhlin C, Bergstrom M, Langstrom B. Pheochromocytomas: Detection with 11C Hydroxyephedrine PET. Radiology 2004, 230: 423–8.

    Article  PubMed  Google Scholar 

  18. Shulkin BL, Wieland DM, Schwaiger M, et al. PET scanning with hydroxyephedrine: an approach to the location of phaeochromocytoma. J Nucl Med 1992, 33: 1125–31.

    CAS  PubMed  Google Scholar 

  19. Prasad V, Ambrosini V, Alavi A, Fanti S, Baum R. PET/CT in neuroendocrine tumors: evaluation of receptor status and metabolism. PET Clinics 2007, 2: 351–75.

    Article  Google Scholar 

  20. Gourgiotis L, Sarlis NJ, Reynolds JC, Vanwaes C, Merino MJ, Pacak K. Localization of medullary thyroid carcinoma metastasis in a multiple endocrine neoplasia type 2A patient by 6-[18F]-fluorodopamine positron emission tomography. J Clin Endocrinol Metab 2003, 88: 637–41.

    Article  CAS  PubMed  Google Scholar 

  21. Khan S, Win Z, Szyszko T, et al. PET imaging of phaeochromocytoma. PET Clinics 2007, 2: 341–9.

    Article  Google Scholar 

  22. Kaji P, Carrasquillo JA, Linehan WM, et al. The role of 6-[18F]-fluorodopamine positron emission tomography in the localization of adrenal phaeochromocytoma associated with von Hippel-Lindau syndrome. Eur J Endocrinol 2007, 156: 483–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hoegerle S, Nitzsche E, Altehoefer C, et al. Phaeochromocytomas: detection with 18F DOPA whole body PET-initial results. Radiology 2002, 222: 507–12.

    Article  PubMed  Google Scholar 

  24. Ilias I, Yu J, Carrasquillo JA, Chen C, et al. Superiority of 6-[18F] fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Endocrinol Metab 2003, 88: 4083–7.

    Article  CAS  Google Scholar 

  25. Intenzo C, Jabbour S, Lin H, et al. Scintigraphic imaging of body neuroendocrine tumors. Radiographies 2007, 27: 1355–69.

    Article  Google Scholar 

  26. Ambrosini V, Rubello D, Nanni C, Al Nahhas A, Fanti S. 68Ga-DOTA-peptides versus 18F-DOPA PET for the assessment of NET patients. Nucl Med Commun 2008, 29: 415–7.

    Article  PubMed  Google Scholar 

  27. Nanni C, Rubello D, Al-Nahhas A, Fanti S. Clinical PET in oncology: not only FDG. Nucl Med Commun 2006, 27: 685–8.

    Article  PubMed  Google Scholar 

  28. Dalgorf D, Higgins KM, Ehrlich L. PET/CT fusion technology: its role in managing recurrent, well-differentiated thyroid cancer. Can J Surg 2008, 51: E21–2.

    PubMed Central  PubMed  Google Scholar 

  29. Grünwald F, Kalicke T, Feine U, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography in thyroid cancer: result of a multicentre study. Eur J Nucl Med 1999, 26: 1547–52.

    Article  PubMed  Google Scholar 

  30. Joensuu H, Ahonen A. Imaging of Metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987, 28: 910–4.

    CAS  PubMed  Google Scholar 

  31. Plotkin M, Hautzel H, Krause BJ, et al. Implication of 2-18fluor-2-deoxyglucose positron emission tomography in the follow up Hurthle cell thyroid cancer. Thyroid 2002, 12: 155–61.

    Article  PubMed  Google Scholar 

  32. Dionigi G, Castano P, Bertolini V, et al. Simultaneous medullary and papillary thyroid cancer: two case reports. J Med Case Reports 2007, 1: 133.

    Article  PubMed Central  Google Scholar 

  33. Urhan M, Alavi A, Nanni C. The evolving role of positron emission tomography in patients with medullary thyroid carcinoma. PET Clinics 2007, 2: 305–11.

    Article  Google Scholar 

  34. Ong SC, Schöder H, Patel SG, et al. Diagnostic accuracy of 18FFDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med 2007, 48: 501–7.

    Article  CAS  PubMed  Google Scholar 

  35. Szakáll S Jr, Esik O, Bajzik G, et al. 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med 2002, 43: 66–71.

    PubMed  Google Scholar 

  36. Giraudet AL, Vanel D, Leboulleux S, et al. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab 2007, 92: 4185–90.

    Article  CAS  PubMed  Google Scholar 

  37. Urhan M, Mavi A, Alavi A, Nanni C. Positron emission tomography and thyroid cancer. PET Clinics 2007, 2: 295–304.

    Article  Google Scholar 

  38. Grassetto G, Alavi A, Rubello D. PET and parathyroid. PET Clinics 2007, 2: 385–93.

    Article  Google Scholar 

  39. Neumann DR, Esselstyn CB, Maclntyre WJ, Go RT, Obuchowski NA, Chen EQ, Licata AA. Comparison of FDG-PET and sestamibi-SPECT in primary hyperparathyroidism. J Nucl Med 1996, 37: 1809–15.

    CAS  PubMed  Google Scholar 

  40. Neumann DR, Esselstyn CB, Kim EY. Recurrent postoperative parathyroid carcinoma: FDG-PET and sestamibi-SPECT findings. J Nucl Med 1996, 37: 2000–1.

    CAS  PubMed  Google Scholar 

  41. Cook GJR, Wong JCH, Smellie WJB, Young AE, Maisey MN, Fogelman I. 11C Methionine positron emission tomography for patients with persistent or recurrent hyperparathyroidism after surgery. Eur J Endocrinol 1998, 139: 195–7.

    Article  CAS  PubMed  Google Scholar 

  42. Sundin A, Johansson C, Hellman P, et al. PET and parathyroid L-[carbon-11] methionine accumulation in hyperparathyroidism. J Nucl Med 1996, 37: 1766–70.

    CAS  PubMed  Google Scholar 

  43. Beggs A, Hain S. Localization of parathyroid adenomas using 11Cmethionine positron emission tomography. Nucl Med Commun 2005, 26: 133–6.

    Article  PubMed  Google Scholar 

  44. Otto D, Boerner A, Hofmann M, et al. Pre-operative localisation of hyperfunctional parathyroid tissue with 11C-methionine PET. Eur J Nucl Med Mol Imaging 2004, 31: 1405–12.

    Article  CAS  PubMed  Google Scholar 

  45. Eriksson B, Orlefors H, Oberg K, Sundin A, Bergström M, Långström B. Developments in PET for the detection of endocrine tumours. Best Pract Res Clin Endocrinol Metab 2005, 19: 311–24.

    Article  CAS  PubMed  Google Scholar 

  46. Kaltsas GA, Besser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 2004, 25: 458–511.

    Article  CAS  PubMed  Google Scholar 

  47. Kloppel G, Anlauf M. Epidemiology, tumour biology and histopathological classification of neuroendocrine tumours of the gastrointestinal tract. Best Pract Res Clin Gastroenterol 2005, 19: 507–17.

    Article  PubMed  Google Scholar 

  48. Virgolini I, Traub-Weidinger T, Decristoforo C. Nuclear medicine in the detection and management of pancreatic islet-cell tumours. Best Pract Res Clin Endocrinol Metab 2005, 19: 213–27.

    Article  PubMed  Google Scholar 

  49. Krenning EP, Kwekkeboom DJ, BakkerWH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993, 20: 716–31.

    Article  CAS  PubMed  Google Scholar 

  50. Schillaci O, Massa R, Scopinaro F. 111ln-pentetreotide scintigraphy in the detection of insulinomas: importance of SPECT imaging. J Nucl Med 2000, 41: 459–62.

    CAS  PubMed  Google Scholar 

  51. Schottelius M, Poethko T, Herz M, et al. First 18F-Iabeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clinical Cancer Research 2004, 10: 3593–606.

    Article  CAS  PubMed  Google Scholar 

  52. Al-Nahhas A, Win Z, Szyszko T, Singh A, Nanni C, Fanti S, Rubello D. Gallium-68 PET: a new frontier in receptor cancer imaging. Anticancer Res 2007, 27: 4087–94.

    CAS  PubMed  Google Scholar 

  53. Nanni C, Rubello D, Al-Nahhas A, Fanti S. Clinical PET in oncology: not only FDG. Nucl Med Commun 2006, 27: 685–8.

    Article  PubMed  Google Scholar 

  54. Hofmann M, Maecke H, Borner R, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminery data. Eur J Nucl Med 2001, 28: 1751–7.

    Article  CAS  PubMed  Google Scholar 

  55. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Try3-octeriotide PET in neuroendocrine tumours: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007, 48: 508–18.

    Article  CAS  PubMed  Google Scholar 

  56. Junik R, Drobik P, Małkowski B, Kobus-Błachnio K. The role of positron emission tomography (PET) in diagnostics of gastroenteropancreatic neuroendocrine tumours (GEP NET). Adv Med Sci 2006, 51: 66–8.

    CAS  PubMed  Google Scholar 

  57. Hoegerle S, Altehoefer C, Ghanem N, et al. Whole-body 18-FDOPA PET for detection of gastrointestinal carcinoid tumors. Radiology 2001, 220: 373–80.

    Article  CAS  PubMed  Google Scholar 

  58. Ambrosini V, Tomassetti P, Castellucci P, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2008, 35: 1431–8.

    Article  CAS  PubMed  Google Scholar 

  59. Ahlstrom H, Eriksson B, Bergström M, Bjurling P, Långström B, Oberg K. Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 1995, 195: 333–7.

    CAS  PubMed  Google Scholar 

  60. Orlefors H, Sundin A, Ahlström H, et al. Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. J Clin Oncol 1998, 16: 2534–41.

    CAS  PubMed  Google Scholar 

  61. Orlefors H, Sundin A, Garske U, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 2005, 90: 3392–400.

    Article  CAS  PubMed  Google Scholar 

  62. Koopmans KP. Neels OC. Kema IP, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenylalanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol 2008, 26: 1489–95.

    Article  PubMed  Google Scholar 

  63. Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumours. J Nucl Med 2001, 42: 213–21.

    CAS  PubMed  Google Scholar 

  64. Muhr C. Positron emission tomography in acromegaly and other pituitary adenoma patients. Neuroendocrinology 2006, 83: 205–10.

    Article  CAS  PubMed  Google Scholar 

  65. de Herder WW, Reijs AE, Feelders RA, et al. Diagnostic imaging of dopamine receptors in pituitary adenomas. Eur J of Endocrinol 2007, 156(Suppl 1): S53–6.

    Article  CAS  Google Scholar 

  66. Koo CW, Bhargava P, Rajagopalan V, Ghesani M, Sims-Childs H, Kagetsu NJ. Incidental detection of clinically occult pituitary adenoma on whole-body FDG PET imaging. Clin Nucl Med 2006, 31: 42–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rubello MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naji, M., Hodolic, M., El-Refai, S. et al. Endocrine tumors: The evolving role of positron emission tomography in diagnosis and management. J Endocrinol Invest 33, 54–60 (2010). https://doi.org/10.1007/BF03346550

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346550

Key-words

Navigation