Skip to main content
Log in

1α,24(S)(OH)2D2 normalizes bone morphology and serum parathyroid hormone without hypercalcemia in 25-hydroxyvitamin D-1-hydroxylase (CYP27B1)-deficient mice, an animal model of vitamin D deficiency with secondary hyperparathyroidism

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background: Vitamin D compounds are effective in managing elevated PTH levels in secondary hyperparathyroidism (SHPT) of renal failure. However, undesired increases in serum calcium and phosphorus associated with compounds such as calcitriol [1,25(OH)2D3] has prompted a search for compounds with improved safety profiles. 1α,24(S)(OH)2D2 (1,24(OH)2D2) is a vitamin D2 metabolite with low calcium-mo bilizing activity in vivo. We studied the efficacy of 1,24(OH)2D2 in mice lacking the CYP27B1 enzyme [25-hydroxyvitamin D-1α-hydroxylase (1α-OHase)], a novel vitamin D deficiency model with SHPT. Materials and methods: 1α-OHase-deficient (−/−) mice and normal (+/−) heterozygous littermates received 1,24(OH)2D2 (100, 300, 1000, and 3000 pg/g/day) or 1,25(OH)2D3 (30, 300, and 500 pg/g/day) for 5 weeks via daily sc injection. Control groups received vehicle. Results: Vehicle-treated 1α-OHase-deficient mice were hypocalcemic and had greatly elevated serum PTH. 1,24(OH)2D2 at doses above 300 pg/g/day normalized serum calcium, serum PTH, bone growth plate morphology, and other bone parameters. No hypercalcemia was observed at any dose of 1,24(OH)2D2 in normal or 1α-OHase-deficient animals. In contrast, 1,25(OH)2D2 at only 30 pg/g/day normalized calcemia, serum PTH, and bone parameters, but at higher doses completely suppressed PTH and caused hypercalcemia in both 1α-OHase-deficient and normal mice. Treatment with 500 pg/g/day of 1,25(OH)2D3 also induced osteomalacia in normal animals. Conclusion: 1,25(OH)2D3 was maximally active at 10-fold lower doses than 1,24(OH)2D2, but induced hypercalcemia and osteomalacia at high doses. 1,24(OH)2D2 normalized serum calcium, serum PTH, and bone histomorphometry without hypercalcemia in 1α-OHase-deficient mice with SHPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. St-Arnaud R, Dardenne O, Glorieux FH. Etiologie moléculaire des rachitismes vitamino-dépendents héréditaires. médecine/sciences 2001, 17: 1289–96.

    Article  Google Scholar 

  2. Hruska KA. Renal osteodystrophy. Baillieres Clin Endocrinol Metab 1997, 11: 165–94.

    CAS  Google Scholar 

  3. Slatopolsky E, Gonzalez E, Martin K. Pathogenesis and treatment of renal osteodystrophy. Blood Purif 2003, 21: 318–26.

    Article  PubMed  Google Scholar 

  4. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2000, 342: 1478–83.

    Article  CAS  PubMed  Google Scholar 

  5. Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R. Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 2001, 142: 3135–41.

    CAS  PubMed  Google Scholar 

  6. Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci U S A 2001, 98: 7498–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dardenne O, Prudhomme J, Hacking SA, Glorieux FH, St-Arnaud R. Rescue of the pseudo-vitamin D deficiency rickets phenotype of CYP27B1-deficient mice by treatment with 1,25-dihydroxyvitamin D3: biochemical, histomorphometric, and biomechanical analyses. J Bone Miner Res 2003, 18: 637–43.

    Article  CAS  PubMed  Google Scholar 

  8. Andress DL, Norris KC, Coburn JW, Slatopolsky EA, Sherrard DJ. Intravenous calcitriol in the treatment of refractory osteitis fibrosa of chronic renal failure. N Engl J Med 1989, 321: 274–9.

    Article  CAS  PubMed  Google Scholar 

  9. Gallieni M, Brancaccio D, Padovese P, et al. Low-dose intravenous calcitriol treatment of secondary hyperparathyroidism in hemodialysis patients. Italian Group for the Study of Intravenous Calcitriol. Kidney Int 1992, 42: 1191–8.

    Article  CAS  PubMed  Google Scholar 

  10. Slatopolsky E, Dusso A, Brown AJ. Control of uremic bone disease: role of vitamin D analogs. Kidney Int Suppl 2002: 143–8.

  11. Brown AJ, Finch J, Takahashi F, Slatopolsky E. Calcemic activity of 19-Nor-1,25(OH)(2)D(2) decreases with duration of treatment. J Am Soc Nephrol 2000, 11: 2088–94.

    CAS  PubMed  Google Scholar 

  12. Frazão JM, Chesney RW, Coburn JW. Intermittent oral 1alpha-hydroxyvitamin D2 is effective and safe for the suppression of secondary hyperparathyroidism in haemodialysis patients. 1alphaD2 Study Group. Nephrol Dial Transplant 1998, 13 (Suppl 3): 68–72.

    Article  PubMed  Google Scholar 

  13. Frazão JM, Elangovan L, Maung HM, et al. Intermittent doxercalciferol (1alpha-hydroxyvitamin D(2)) therapy for secondary hyperparathyroidism. Am J Kidney Dis 2000, 36: 550–61.

    Article  PubMed  Google Scholar 

  14. Martin KJ, González EA, Gellens M, Hamm LL, Abboud H, Lindberg J. 19-Nor-1-alpha-25-dihydroxyvitamin D2 (Paricalcitol) safely and effectively reduces the levels of intact parathyroid hormone in patients on hemodialysis. J Am Soc Nephrol 1998, 9: 1427–32.

    CAS  PubMed  Google Scholar 

  15. Maung HM, Elangovan L, Frazão JM, et al. Efficacy and side effects of intermittent intravenous and oral doxercalciferol (1alpha-hydroxyvitamin D(2)) in dialysis patients with secondary hyperparathyroidism: a sequential comparison. Am J Kidney Dis 2001, 37: 532–43.

    Article  CAS  PubMed  Google Scholar 

  16. Knutson JC, LeVan LW, Valliere CR, Bishop CW. Pharmacokinetics and systemic effect on calcium homeostasis of 1 alpha,24-dihydroxyvitamin D2 in rats. Comparison with 1 alpha,25-dihydroxyvitamin D2, calcitriol, and calcipotriol. Biochem Pharmacol 1997, 53: 829–37.

    Article  CAS  PubMed  Google Scholar 

  17. Strugnell S, Byford V, Makin HL, et al. 1 alpha,24(S)-dihydroxyvitamin D2: a biologically active product of 1 alpha-hydroxyvitamin D2 made in the human hepatoma, Hep3B. Biochem J 1995, 310 (Pt 1): 233–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Dickson GR. Methods of calcified tissue preparation. New York: Elsevier. 1984.

    Google Scholar 

  19. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987, 2: 595–610.

    Article  CAS  PubMed  Google Scholar 

  20. Dardenne O, Prud’homme J, Hacking SA, Glorieux FH, St-Arnaud R. Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). Bone 2003, 32: 332–40.

    Article  CAS  PubMed  Google Scholar 

  21. Ohyama Y, Noshiro M, Okuda K. Cloning and expression of cDNA encoding 25-hydroxyvitamin D3 24-hydroxylase. FEBS Lett 1991, 278: 195–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hoenderop JG, van der Kemp AW, Urben CM, Strugnell SA, Bindels RJ. Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. Kidney Int 2004, 66: 1082–9.

    Article  CAS  PubMed  Google Scholar 

  23. Brown AJ, Ritter CS, Holliday LS, Knutson JC, Strugnell SA. Tissue distribution and activity studies of 1,24-dihydroxyvitamin D2, a metabolite of vitamin D2 with low calcemic activity in vivo. Biochem Pharmacol 2004, 68: 1289–96.

    Article  CAS  PubMed  Google Scholar 

  24. Tenenhouse HS, Gauthier C, Chau H, St-Arnaud R. 1alpha-Hydroxylase gene ablation and Pi supplementation inhibit renal calcification in mice homozygous for the disrupted Npt2a gene. Am J Physiol Renal Physiol 2004, 286: F675–81.

    Article  CAS  PubMed  Google Scholar 

  25. Omdahl JL, Bobrovnikova EA, Choe S, Dwivedi PP, May BK. Overview of regulatory cytochrome P450 enzymes of the vitamin D pathway. Steroids 2001, 66: 381–9.

    Article  CAS  PubMed  Google Scholar 

  26. Zinser GM, Tribble E, Valrance M, et al. 1,24(S)-dihydroxyvitamin D2, an endogenous vitamin D2 metabolite, inhibits growth of breast cancer cells and tumors. Anticancer Res 2005, 25: 235–41.

    CAS  PubMed  Google Scholar 

  27. Takahashi F, Finch JL, Denda M, Dusso AS, Brown AJ, Slatopolsky E. A new analog of 1,25-(OH)2D3, 19-NOR-1,25-(OH)2D2, suppresses serum PTH and parathyroid gland growth in uremic rats without elevation of intestinal vitamin D receptor content. Am J Kidney Dis 1997, 30: 105–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. St-Arnaud PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

St-Arnaud, R., Arabian, A., Yu, V.W.C. et al. 1α,24(S)(OH)2D2 normalizes bone morphology and serum parathyroid hormone without hypercalcemia in 25-hydroxyvitamin D-1-hydroxylase (CYP27B1)-deficient mice, an animal model of vitamin D deficiency with secondary hyperparathyroidism. J Endocrinol Invest 31, 711–717 (2008). https://doi.org/10.1007/BF03346420

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346420

Key-words

Navigation