Skip to main content
Log in

The effects of food restriction on maternal endocrine adaptations in pregnant rats

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize hemodynamic, electrolytic and endocrine alterations produced by food restriction (50%) in pregnant rats for the purpose of evaluating the importance of these parameters on the plasma volume expansion and fetal growth. One hundred seventy six pregnant rats were divided into two groups, a control group (C) with an ad libitum diet and another with a restricted diet (U) (50% by weight of the diet of the control group). On days 5, 10, 15 and 20 of pregnancy, the weight of the mother, water intake, urine output, urine and plasma sodium concentration, plasma potassium concentration, blood pressure and heart rate, osmolality, plasma renin activity (PRA) and vasopressin were recorded. The number and weight of the fetuses were determined on days 15 and 20 of gestation. Food restriction results in inadequate weight gain in the mother and retardation of fetal growth. Water and sodium balance (p≤0.001) were decreased in U group and basal PRA (p≤0.001) was increased in U group. Food restriction did not significantly alter urine sodium excretion, plasma osmolality, plasma sodium and potassium values, blood pressure and basal vasopressin values. We conclude that the higher values of PRA, described in food restriction situations during pregnancy, seem to be caused by the adaptation to low sodium intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richter C.P., Barelare M. Nutritional requirements of pregnant and lactating rats studied by the self-selection method. Endocrinology 1983, 23: 15–20.

    Article  Google Scholar 

  2. Denton D. Salt appetite during reproduction. In: Denton D., (Ed.), The Hunger for Salt. An Anthropological, Physiological, and Medical Analysis. Springer-Verlag, Berlin-Heidelberg, 1984, p. 417–442.

    Google Scholar 

  3. Schrier R.W., Durr J.A. Pregnancy: An overfill or underfill state. Am. J. Kidney Dis. 1987, 9: 284–289.

    CAS  PubMed  Google Scholar 

  4. Pike R.L., Yao C. Increased sodium chloride appetite during pregnancy. J. Nutr. 1971, 101: 169–176.

    CAS  PubMed  Google Scholar 

  5. Phippard A.F., Horvath J.S., Glynn E.M., Garner M.G., Fletcher P.J. Circulatory adaptation to pregnancy. Serial studies of haemodynamics, blood volume, renin and aldosterone in the baboon (Papio hamadryas). J. Hypertens. 1986, 4: 773–779.

    Article  CAS  PubMed  Google Scholar 

  6. Brown M.A., Gallery E.D., Ross M.R., Esber R.P. Sodium excretion in normal and hypertensive pregnancy: A prospective study. Am. J. Obstet. Gynecol. 1988, 159: 297–307.

    Article  CAS  PubMed  Google Scholar 

  7. Howard R.L., Schrier R.W. A unifying hypothesis for sodium and water regulation in health and disease. Horm. Res. 1990, 34: 118–123.

    Article  CAS  PubMed  Google Scholar 

  8. Schrier R.W., Briner V.A. Peripheral arterial vasodilation hypothesis of sodium and water retention in pregnancy: Implications for pathogenesis of preeclampsia-eclampsia. Obstet. Gynecol. 1991, 77: 632–639.

    CAS  PubMed  Google Scholar 

  9. Valloton M.B., Davidson J.M., Riondel A.M., Lindheimer M.D. Response of the renin-aldosterone system and antidiuretic hormone to oral water loading and hypertonic saline infusions. Clin. Exp. Hyper. 1983, 263: 385–400.

    Google Scholar 

  10. Paller M.S. Decreased pressor responsiveness in pregnancy studies in experimental animals. Am. J. Kidney Dis. 1987, 9: 308–311.

    CAS  PubMed  Google Scholar 

  11. Derkx F.H.M., Stnenkel C., Schalekamp M.P.A., Visser W., Huisveld I.H, Schalekamp M.A.J. Immunoreactive renin, prorenin, and enzymatically active renin in plasma during pregnancy in women taking oral contraceptives. J. Clin. End. Metab. 1985, 63: 1008–1015.

    Article  Google Scholar 

  12. Broughton-Pipkin F. The renin angiotensin system in normal and hypertensive pregnancies. In: Rubin P.C. (Ed.), Handbook of Hypertension. Elsevier Science Publishers, Amsterdam, 1988, p. 118–132.

    Google Scholar 

  13. Symonds E.M. Renin and reproduction. Am. J. Obstet. Gynaecol. 1988, 158: 754–761.

    Article  CAS  Google Scholar 

  14. Barron W.M., Stamoutsos M.D., Lindheimer M.D. Role of volume in the regulation of vasopressin secretion during pregnancy in the rat. J. Clin. Invest. 1984, 73: 923–932.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Davidson J.M., Gilmore E.A., Durr J., Robertson G.M., Lindheimer M.D. Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. Am. J. Physiol. 1984, 246: 105–109.

    Google Scholar 

  16. Barron W.M., Lindheimer M.D. Osmoregulation in pseudopregnant and prolactintreated rats: Comparison with normal gestation. Am. J. Physiol. 1988, 254: 478–484.

    Google Scholar 

  17. Susser M. Maternal weight gain, infant birth weight, and diet: Causal sequences. Am. J. Clin. Nutr. 1991, 53: 1384–1396.

    CAS  PubMed  Google Scholar 

  18. Godfrey K.M., Baker D.J. Maternal nutrition in relation to fetal and placental growth. Eur. J. Obstet. Gynecol. Repr. Biol. 1995, 61: 15–22.

    Article  CAS  Google Scholar 

  19. Rosso P. Maternal nutrition, nutrient exchange, and fetal growth. In: Rosso P. (Ed.), Nutritional disorders of American women. John Wiley and Sons, New York, 1977, p. 172–183.

    Google Scholar 

  20. Rosso P. Placental growth, development, and function in relation to maternal nutrition. Fed. Proc. 1980, 39: 250–254.

    CAS  PubMed  Google Scholar 

  21. Lederman S.A., Rosso P. The pattern of plasma volume changes in well-nourished and in food- or protein-restricted pregnant rats. J. Am. Coll. Nutr. 1989, 8: 215–224.

    Article  CAS  PubMed  Google Scholar 

  22. Rosso P., Salas S.P. Mechanism of fetal growth retardation in the underweight mother. In: Allen L., King J., Lonnerdal J. (Eds.), Nutrient regulation during lactation pregnancy and infant growth. Plenum Press, New York, 1994, p. 11–23.

    Google Scholar 

  23. Rosso P. Maternal-fetal exchange during protein malnutrition in the rat. Placental transfer of glucose and nonmetabolizable glucose analog. J. Nutr. 1997, 107: 2006–2110.

    Google Scholar 

  24. Rosso P. Maternal-fetal exchange during protein malnutrition in the rat. Placental transfer of alpha amino acid, isobutiric acid. J. Nutr. 1997, 107: 2002–2005.

    Google Scholar 

  25. Bird E., Contreras R.J. Dietary salt affects fluid intake and output patterns of pregnant rats. Physiol. Behav. 1986, 37: 365–369.

    Article  CAS  PubMed  Google Scholar 

  26. Jover B., Dupont B.M., Geleen G., Wahba W., Mimram A., Comman B. Renal and systemic adaptation to sodium restriction in aging rats. Am. J. Physiol. 1993, 264: 833–838.

    Google Scholar 

  27. Holmer S., Eckardt M., Lehir M., Schricker K., Riegger G., Kurtz A. Influence of dietary NaCl intake on renin gene expression in the kidneys and adrenal glands of rats. Pflügers Arch. 1993, 425: 62–67.

    Article  CAS  PubMed  Google Scholar 

  28. Iwao H., Fukui K., Kim S., Nakayama K., Ohkubo H., Nakanishi S., Abe Y. Sodium balance effects on renin angiotensinogen, and atrial natriuretic polypeptide mRNA levels. Am. J. Physiol. 1988, 255: 129–136.

    Google Scholar 

  29. Morimoto S., Abe R., Fukuhara A., Tanaka K., Yamamoto K. Effect of sodium restriction on plasma renin activity and renin granules in rat kidney. Am. J. Physiol. 1979, 237: 367–371.

    Google Scholar 

  30. Schneider E.G., Taylor R.E., Radke K.J., Davis P.G. Effect of sodium concentration on aldosterone secretion by isolated perfused canine adrenal glands. Endocrinology 1984, 115: 2195–2204.

    Article  CAS  PubMed  Google Scholar 

  31. Matsuoka H., Ishii M., Yamakado M., Uchara Y. Effect of natrium ionophore on aldosterone production in the rat adrenal gland. Endocrinology 1984, 115: 2039–2044.

    Article  CAS  PubMed  Google Scholar 

  32. Swartz S.I., Williams G.H., Hollenberg N.K. Primacy of the renin-angiotensin system in mediating the aldosterone response to sodium restriction. J. Clin. Endocrinol. Metab. 1980, 50: 1071–1084.

    Article  CAS  PubMed  Google Scholar 

  33. Quinn S.J., Williams G.H. Regulation of aldosterone secretion. Ann. Rev. Physiol. 1988, 50: 409–426.

    Article  CAS  Google Scholar 

  34. Himathongkam T., Dluhy R.G., Williams G.H. Potassium-aldosterone-renin interrelationships. J. Clin. Endocrinol. Metab. 1975, 41: 153–159.

    Article  CAS  PubMed  Google Scholar 

  35. Longo L.D. Maternal blood volume and cardiac output during pregnancy: A hypothesis of endocrinologic control. Am. J. Physiol. 1983, 245: 720–725.

    Google Scholar 

  36. Lindheimer M.D., Barron W.M., Davidson J.M. Osmoregulation of thirst and vasopressin release in pregnancy. Am. J. Physiol. 1989, 257: 159–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Fernández M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leizea, J.P., González, C.G., García, F.D. et al. The effects of food restriction on maternal endocrine adaptations in pregnant rats. J Endocrinol Invest 22, 327–332 (1999). https://doi.org/10.1007/BF03343569

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343569

Key-words

Navigation