Skip to main content
Log in

Developments in Titanium Alloy Casting Technology

  • Physical & Mechanical Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Summary

Improved life and performance of aerospace, marine, and corrosion-resistant systems can in many cases be achieved by increased use of titanium alloys. However, titanium alloys have shown only a modest increase in use in recent years mainly due to the combination of basic material expense and the high cost of component fabrication. One approach used to circumvent this problem is net-shape technologies which minimize costly material wastage. Titanium alloy casting technology is an attractive net-shape approach which lately has been receiving increased attention. The various aspects of the two main casting methods, the rammed graphite and the investment casting techniques, are discussed, including size, shape-making, and resulting properties, and ways to improve them. The comparison of mechanical properties of castings to ingot metallurgy (cast and wrought) parts indicates that not only is casting technology cost competitive, but many properties such as fracture toughness and fatigue crack growth rate are equivalent to those exhibited by ingot metallurgy (IM) material. This results from both the as-cast microstructure and the ability to completely close internal porosity in titanium alloys by hot isostatic pressing (HIP). It is suggested that the casting factor, which is currently applied to titanium castings, is inappropriate, and serious thought should be given to eliminating this factor. Current R&D work in titanium alloy casting technology is highlighted, and some thoughts for future developments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Tupper, J. K. Elbaum, and H. M. Burte, “Opportunities of Cost-Affordable Titanium Aerospace Structures,” Journal of Metals, 30 (1978), pp. 7–13.

    Google Scholar 

  2. D. Eylon, M. Field, F. H. Froes, and G. E. Eichelman, “Manufacture of Cost-Affordable High Performance Titanium Components for Advanced Air Force Systems,” SAMPE Quarterly, 12(3) (1981), pp. 19–25.

    Google Scholar 

  3. W. W. Minkler, “Status of Titanium Sponge Expansion,” Journal of Metals, 31(5) (1979), pp. 22–57.

    Google Scholar 

  4. F. H. Froes, D. Eylon, G. E. Eichelman, and H. M. Burte, “Developments in Titanium Powder Metallurgy,” Journal of Metals, 32(2) (1980), pp. 47–54.

    Google Scholar 

  5. J. R. Newman, “Titanium Castings,” Metals Handbook (9th edition), ASM Publications, Vol. 3, pp. 407–417.

  6. R. F. Tylecote, A History of Metallurgy, Chapter 2, The Metals Society, London, 1979 (Second Impression) pp. 5–13.

    Google Scholar 

  7. P. Bar-Adon, The Cave of the Treasure, Israel Exploration Society, Jerusalem, 1980, (Appendix D by R. Potszkin and K. Bar-Avi).

    Google Scholar 

  8. D. Eylon, J. A. Hall, C. M. Pierce, and D. L. Ruckle, “Microstructure and Mechanical Properties Relationships in the Ti-11 Alloy at Room and Elevated Temperatures,” Metallurgical Transactions A, 7A (1976), pp. 1817–1826.

    Google Scholar 

  9. D. Eylon and C. M. Pierce, “Effect of Microstructure on Notch Fatigue Properties of Ti-6A1-4V,” Metallurgical Transactions A, 7A (1976), pp. 111–121.

    Article  Google Scholar 

  10. G. R. Yoder, L. A. Cooley, and T. W. Crooker, “Fatigue Crack Propagation Resistance of Beta-Annealed Ti-6A1-4V Alloys of Differing Interstitial Oxygen Content,” Metallurgical Transactions A, 9A (1978), pp. 1413–1420.

    Article  Google Scholar 

  11. D. Eylon and B. Strope, “Fatigue Crack Initiation in Ti-6A1-4V Castings,” Journal of Materials Science, 14 (1979), pp. 345–353.

    Article  Google Scholar 

  12. D. Eylon, “Fatigue Crack Initiation in Hot Isostatically-Pressed Ti-6A1-4V Castings,” Journal of Materials Science, 14 (1979), pp. 1914–1920.

    Article  Google Scholar 

  13. J. K. Kura, “Titanium Casting Today,” Metals and Ceramics Information Center, December 1973, MCIC-73-16.

  14. H. D. Hanes, D. A. Siefert and C. R. Watts, “Hot Isostatic Processing,” Battelle Press, Columbus, Ohio, 1979, p. 55.

    Google Scholar 

  15. R. A. Beahl, F. W. Wood, and A. H. Robertson,. “Large Titanium Castings Produced Successfully,” Journal of Metals, 7(7) (1955), pp. 801–804.

    Google Scholar 

  16. R. A. Beahl, F. W. Wood, J. O. Borg, and H. L. Gilbert, “Production of Titanium Castings,” U.S. Bureau of Mines, Report 5265, August 1956, pp. 42.

  17. W. J. Kroll, C. T. Anderson, and H. L. Gilbert, “A New Graphite Resistor Vacuum Furnace and Its Application in Melting Zircomium,” Transactions AIME, 175, (1948), pp. 766–773.

    Google Scholar 

  18. S. L. Ausmus and R. A. Beahl, “Expendable Casting Molds for Reactive Metals,” U.S. Bureau of Mines, Report 6509, 1964, p. 44.

  19. R. K. Koch and J. M. Burrus, “Bezonite-Bonded Rammed Olivine and Zircon Molds for Titanium Casting,” U.S. Bureau of Mines, Report 8587, 1981, 40 pp.

  20. H. D. Hanes, D. A. Seifert, and C. R. Watts, “Hot Isostatic Processing,” MCIC Report, November 1977, MCIC-77-34, Metals and Ceramics Information Center, Columbus, Ohio.

    Google Scholar 

  21. F. C. Teifke, N. H. Marshall, D. Eylon, and F. H. Froes, “Effect of Processing on Fatigue Life of Ti-6A1-4V Castings,” in Advanced Processing Methods for Titanium, ed. by D. Hasson, The Metallurgical Society of AIME, Warrendale, Pennsylvania, pp. 147–159.

  22. R. J. Smickley and L. P. Bendarz, “Processing and Mechanical Properties of Investment Cast Ti-6A1-4V ELI Alloy for Surgical Implants, a Progress Report,” ASTM STP on Titanium Alloys in Surgical Implants (in press).

  23. W. C. Harrigan, “Creep Fracture Characteristics of Weld-Repaired Cast Ti-6A1-4V,” Metallurgical Transactions, 5 (1974), pp. 565–572.

    Article  Google Scholar 

  24. M. S. Misra, L. Lemeshewsky, and D. Bolstad, “The Effects of Weld Repair and Hot Isostatic Pressing on the Fracture Properties of Ti-5Al-2.5Sn ELI Castings,” in Advanced Processing Methods of Titanium, ed. by D. Hasson, The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1982, pp. 161–174.

    Google Scholar 

  25. A. M. Hammer, “Evaluation of Cast Titanium Alloy Compressor Components — Volume 1,” AVRADCOM Report No. TR-80-F-10, November 1981.

  26. J. Alexander, Precision Castparts Corp., Portland, Oregon, Private Communication, 1982.

  27. J. R. Newman and R. G. Helsel, TiTech, Pomona, California, Private Communication, 1982 and TiTech Titanium Casting Catalogue.

  28. G. J. Dooley, III, Oregon Metallurgical Corp., Albany, Oregon, Private Communication, 1982 and OREMET Titanium Casting Catalogue.

  29. B. A. Ewing, “Cast Titanium Components for Rotating Gas Turbine Applications,” Proceedings of the AGARD Specialists Meeting on Advanced Casting Technology, Brussels, Belgium, April 1982.

  30. J. R. Humphrey, REM Metals Corporation, Report IR-162, November 1973.

  31. R. J. Smickley and L. E. Dardi, “Processing-Property Relationships of Investment Cast Ti-6Al-2Sn-4Zr-2Mo,” 1980 TMS-AIME Fall Meeting.

  32. C. F. Fiftal, D. A. Bolstad, and M. S. Misra, “Fracture Resistance of Ti-5Al-2.5Sn Extra-low Interstitital Castings,” Toughness and Fracture Behavior of Titanium, STP 651, ASTM Publications, Philadelphia, Pennsylvania 1978, pp. 3–16.

    Chapter  Google Scholar 

  33. F. A. Crossley and W. J. Barice, “Mechanical Properties of Two Cast and Hot Isostatically-Pressed Martensitic Transage Titanium Alloys,” Journal of Metals, 33(2) (1981), pp. 26–32.

    Google Scholar 

  34. F. A. Crossley and W. J. Barice, “Cast Transage 175 Titanium Alloys for Durability Critical Structural Components,” Proceedings of the 22nd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Atlanta, Georgia, April 1981, pp. 134–140.

  35. R. R. Wright, J. K. Thorne, and R. J. Smickley, Howmet Turbine Components Corp., Ti-Cast Division, Whitehall, Michigan, Private Communication, 1982 and Howmet Technical Bulletin TB 1660.

  36. H. B. Bomberger, G. S. Hall, and S. R. Seagle, “Low Melting Hypereutectoid Titanium-Copper Alloys,” in Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izuma, The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1980, pp. 1277–1285.

    Google Scholar 

  37. R. R. Boyer and R. Bajoraistis, “Standardization of Ti-6A1-4V Processing Conditions,” Air Force Materials Laboratory Technical Report, AFML-TR-78-131, Boeing Commercial Airplane Company, Seattle, Washington, September 1978.

    Google Scholar 

  38. D. Eylon and W. R. Kerr, “The Fractographic and Metallographic Morphology of Fatigue Initiation Sites,” ASTM STP 645, Fractography in Failure Analysis, ASTM Publication, Philadelphia, Pennsylvania, 1978, pp. 235–248.

    Chapter  Google Scholar 

  39. D. Eylon, T. L. Bartel and M. E. Rosenblum, “High Temperature Low Cycle Fatigue of Beta-Annealed Titanium Alloy,” Metallurgical Transaction A, 11A (1980), pp. 1361–1367.

    Article  Google Scholar 

  40. D. Eylon and M. E. Rosenblum, “Effects of Dwell on High Temperature Low Cycle Fatigue of a Titanium Alloy,” Metallurgical Transactions A, 13A (1982), pp. 322–324.

    Article  Google Scholar 

  41. D. Eylon and J. A. Hall, “Fatigue Behavior of Beta-Processed Titanium Alloy IMI-685,” Metallurgical Transactions A, 8A (1977), pp. 981–990.

    Article  Google Scholar 

  42. D. Shechtman and D. Eylon, “On the Unstable Shear in Fatigued Beta-Annealed Ti-11 and IMI-685 Alloys,” Metallurgical Transactions A, 9A (1978), pp. 1273–1279.

    Google Scholar 

  43. G. R. Yoder and D. Eylon, “On the Effect of Colony Size on Fatigue Crack Growth in Widmanstatten Structure Alpha+Beta Alloys,” Metallurgical Transactions A, 10A (1979), pp. 1808–1810.

    Article  Google Scholar 

  44. D. Eylon and P. J. Bania, “Fatigue Cracking Characteristics of Beta-Annealed Large Colony Ti-11 Alloy,” Metallurgical Transactions A, 9A (1978), pp. 1273–1279.

    Article  Google Scholar 

  45. R. J. Smickley, “Heat Treatment Response of HIP’d Cast Ti-6A1-4V,” WesTech 1981, Abstract Book.

  46. W. R. Kerr, P. R. Smith, M. E. Rosenblum, F. J. Gurney, Y. R. Mahajan, and L. R. Bidwell, “Hydrogen as an Alloying Element in Titanium (Hydrovac),” in Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izumi, The Metallurgical Society of AIME, Warrendale, Pennsylvania, (1980), pp. 2477–2486.

    Google Scholar 

  47. E. Brown, Pratt and Whitney, Materials Engineering and Research Laboratory (MERL), East Hartford, Connecticut, Private Communications, 1982.

  48. M. J. Bonassar and J. J. Lucas, “Alpha Platelet Thickness Controls Properties of Beta-Processed Ti-6A1-4V,” SAMPE Journal, July/August 1981, pp. 21–23.

  49. C. F. Yolton and F. H. Froes, U.S. Patent No. 4,219,357, on “Method for Producing Powder Metallurgy Article,” August 26, 1980.

  50. C. A. Kelto, B. A. Kosmal, D. Eylon, and F. H. Froes, “Titanium Powder Metallurgy — A Perspective,” Journal of Metals, 30(8) (1980), pp. 17–25.

    Google Scholar 

  51. L. Levin, R. Vogt, R. Underwood, D. Eylon, and F. H. Froes, On-going work at AFWAL/MLLS, WPAFB, Ohio, 1982.

    Google Scholar 

  52. L. J. Maidment and H. Paweltz, “An Evaluation of Vacuum Centrifuged Titanium Castings for Helicopter Components,” in Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izumi, The Metallurgical Society of AIME, Warrendale, Pennsylvania, (1980), pp. 467–475.

    Google Scholar 

  53. J.-P. Herteman, “Properties D’emploi de L’alliage de Titane T.A6V Moule Densifie ou non par Compaction Isostatic a Chaud,” Centre D’essais Aeronautique de Toulouse, Technical Report No. 3Q/M/79, July 1979.

  54. W. H. Ficht, “Centrifugal Cast Titanium Compressor Case,” General Electric Company, Aircraft Engine Group, Lynn, Massachusetts, Manufacturing Technology Advisory Group (MTAG) Meeting 1979.

  55. D. Eylon, P. R. Smith, S. W. Schwenker, and F. H. Froes, “Titanium Powder Metallurgy for Industrial Application,” to be published in ASTM STP on Industrial Applications of Titanium and Zirconium.

  56. M. J. Wynne, British Aircraft Corporation Report No. TN-4301, November 1972.

  57. General Specifications for Airplane Strength and Rigidity, Military Specification, MIL-A-8860 (ASG), May 18, 1960, paragraph 3.2.1.1.

  58. Code of Federal Regulations, Title 14: Federal Aviation Administration, Department of Transportation, January 1, 1982, Article 25.621, pp. 281–282.

  59. Code of Federal Regulations, Title 14: Federal Aviation Administration, Department of Transportation, January 1, 1982, Article 25.621, pp. 281–282.

  60. G. K. Hunt and A. W. Cardrick, Private Communication, 1982.

  61. Titanium for Energy and Industrial Applications, ed. by D. Eylon, The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1981, p. 403.

    Google Scholar 

  62. W. J. Barice, Precision Castparts Corporation, Portland, Oregon,Private Communication, 1982.

  63. Aviation Week and Space Technology, December 10, 1979, p. 22.

  64. G. Welsch and W. Bunk, “Deformation Modes of the Alpha Phase of Ti-6A1-4V as a Function of Oxygen Concentration and Aging Temperature,” Metallugical Transactions A, 13A (1982), pp. 889–899.

    Article  Google Scholar 

  65. Chester Sims and William Hagel, The Superalloys, John Wiley and Sons, New York, 1982, p. 406.

    Google Scholar 

  66. Y. Ibaraki and T. Sasaki, “Improvement of the Microstructure by the Cyclic Heating of Cast Ti-6A1-4V Alloy,” Jr. Jap. Inst. Metals, 43(9) (1979), pp. 845–850.

    Google Scholar 

  67. P. R. Smith, C. M. Cooke, and F. H. Froes, “Evaluation of Ti-6A1-4V PM Plate — Part II,” Work in Progress at AFWAL/MLLS, W-PAFB, Ohio, 1982.

  68. A. F. Hayes, Ladish Company, Cudahy, Wisconsin, Private Communication, November 1982.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eylon, D., Froes, F.H. & Gardiner, R.W. Developments in Titanium Alloy Casting Technology. JOM 35, 35–47 (1983). https://doi.org/10.1007/BF03338203

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03338203

Keywords

Navigation