Skip to main content
Log in

50 Years of Foundry-Produced Metal Matrix Composites and Future Opportunities

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This is the Golden Anniversary paper of the 1969 AFS paper “Dispersion of Graphite Particles in Aluminum Castings through Injection of the Melt.” This paper reviews the progress in cast metal matrix composites (MMCs) over 50 years. Property motivation and current use of MMC components in automotive, railways, space, computer hardware, and recreational equipment are presented. Information on the MMC industry including the total volume of major producers of cast MMCs is listed. Some cast MMCs discussed include aluminum–graphite, aluminum–silicon carbide, aluminum–alumina, and aluminum–fly ash. Current and future directions in cast MMCs, including the manufacture of foundry-produced nanocomposites, functionally gradient materials, syntactic foams, self-healing, and self-lubricating composites, are presented. Recent progress in the manufacture of lightweight self-lubricating cylinder liners for compressors, piston, and rotary engines in Al–graphite and Al–graphite–SiC composites are discussed. Future foundry-produced prospects of MMCs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38

Similar content being viewed by others

References

  1. P.K. Rohatgi, B.C. Pai, S.C. Panda, Preparation of cast aluminum-silica particulate composites. J. Mater. Sci. (UK) 14, 2277–2283 (1979)

    CAS  Google Scholar 

  2. P. Rohatgi, Cast metal matrix composites: past, present, and future, in Transactions of the American Foundry Society and the One Hundred Fifth Annual Castings Congress, 2001, pp. 1–25

  3. Metal Matrix Composites (MMC) Market for Ground Transportation, Electronics/Thermal Management, Aerospace, and Other End-users—Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013–2019

  4. M.K. Surappa, P.K. Rohatgi, Preparation and properties of cast Al-alloy-ceramic particulate composites. J. Mater. Sci. (UK) 16(4), 983–993 (1981)

    CAS  Google Scholar 

  5. R. Mehrabian, A. Sato, M.C. Flemings, Cast composites of aluminum alloys. Light Met. 1975, 2 (1975)

    Google Scholar 

  6. F.A. Badia, P.K. Rohatgi, Dispersion of graphite particles in aluminum castings through injection of the melt. Trans. AFS 76, 402–406 (1969)

    Google Scholar 

  7. T.P.D. Rajan, R.M. Pillai, B.C. Pai, K.G. Satyanarayana, P.K. Rohatgi, Fabrication and characterization of Al–7Si–0.35 Mg/fly ash metal matrix composites processed by different stir casting routes. Compos. Sci. Technol. 67, 3369–3377 (2007)

    CAS  Google Scholar 

  8. M.R. Madhava, S. Raman, P.K. Rohatgi, M.K. Surappa, Influence of certain microstructural parameters on the ultrasonic velocities and elastic constants of aluminum alumina particulate composites. Scr. Metall (USA) 15, 1191–1195 (1981)

    CAS  Google Scholar 

  9. D. Nath, P.K. Rohatgi, Cast aluminum alloy composites containing copper coated ground mica particles. J. Mater. Sci. (UK) 16(6), 1599–1606 (1981)

    Google Scholar 

  10. M.K. Surappa, S.V. Prasad, P.K. Rohatgi, Wear and abrasion characteristics of cast Al-alumina particle composites. Wear (UK) 77, 295–302 (1981)

    Google Scholar 

  11. P.K. Rohatgi, S. Ray, P.K. Kelkar, Preparation of aluminum–alumina composite. Indian Patent 124305, 1972

  12. Rohatgi et al., Aluminum–silicon carbide; aluminum–Al2O3; aluminum-mica composite (IISc, Bangalore, 1974)

  13. A. Banerjee, P.K. Rohatgi, Cast aluminum alloy containing dispersions of titania and zirconia particles. J. Mater. Sci. (UK) 17(2), 335–342 (1982)

    Google Scholar 

  14. M.D. Skibo, D.M. Schuster. Process for the production of metal matrix composites by casting and composite therefrom. U.S. Patent 4,759,995. Issued July 26, 1988

  15. M. Suwa, K. Komuro, Method of producing graphite-containing copper alloys. U.S. Patent 4,207,096. Issued June 10, 1980

  16. D. Rohatgi, Aluminum–Microballoon Syntactic Foam (AMPRI, Bhopal, 1984)

    Google Scholar 

  17. Aluminum-TiC by X-D In-situ Process at Martin Marietta 1985

  18. A. Mortensen, M.N. Gungor, J.A. Cornie, M.C. Flemings, Alloy microstructures in cast metal matrix composites. JOM 38(3), 30–35 (1986)

    CAS  Google Scholar 

  19. B.K. Prasad, T.K. Dan, P.K. Rohatgi, Pressure-induced improvement in interfacial bonding between graphite and the aluminum matrix in graphitic-aluminum particle composites. J. Mater. Sci. Lett. 6(9), 1076–1078 (1987)

    CAS  Google Scholar 

  20. M.K. Aghajanian, J.T. Burke, D.R. White, A.S. Nagelberg, A new infiltration process for the fabrication of metal matrix composites. SAMPE Q. 20, 43–46 (1989)

    CAS  Google Scholar 

  21. Honda, Al-Saffil/Alumina/Graphite Fiber Composite by Pressure Infiltration (Honda, Hamamatsu, 1992)

    Google Scholar 

  22. T. Suganuma, Al/SiCpBrake Drum (Toyota, Toyota city, 1997)

    Google Scholar 

  23. Al/SiCp Brake drum using stir casting for Volkswagen 1999

  24. T. Suganuma, Al-Al2O3/SiO3/MullitepComposites for Toyota (Toyota, Toyota city, 2000)

    Google Scholar 

  25. D.P. Robertson, M. Gajdardziska-Josifovska, J.K. Kim, R.Q. Guo, P.K. Rohatgi, Electron microscopy characterization of aluminum alloy-fly ash composites. Microsc. Microanal. 8(S02), 1278–1279 (2002)

    Google Scholar 

  26. P.K. Rohatgi, P. Shukla, R.B. Thakkar, D. Weiss, Tensile and fatigue properties of permanent mold cast A359-SICp aluminum alloys. Afford. Met. Matrix Compos. High Perform. Appl. 2, 113–126 (2010)

    Google Scholar 

  27. M. Kestursatya, J.K. Kim, P.K. Rohatgi, Wear performance of copper–graphite composite and a leaded copper alloy. Mater. Sci. Eng. A 339(1–2), 150–158 (2003)

    Google Scholar 

  28. A. Daoud, M.T. Abou-Elkhair, P. Rohatgi, Wear and friction behavior of near eutectic Al–Si + ZrO2 or WC particle composites. Compos. Sci. Technol. 64(7–8), 1029–1040 (2004)

    CAS  Google Scholar 

  29. Y. Yang, J. Lan, X. Li, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater. Sci. Eng. A 380(1–2), 378–383 (2004)

    Google Scholar 

  30. S. Naher, D. Brabazon, L. Looney, Development and assessment of a new quick quench stir caster design for the production of metal matrix composites. J. Mater. Process. Technol. 166(3), 430–439 (2005)

    CAS  Google Scholar 

  31. P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, A. Daoud, Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Compos. Part A Appl. Sci. Manuf. 37(3), 430–437 (2006)

    Google Scholar 

  32. H.G. Seong, H.F. Lopez, M. Gajdardziska-Josifovska, P.K. Rohatgi, Nucleation effects in thermally managed graphite fiber-reinforced Al-Cu and Al-Si composites. Metall. Mater. Trans. A 38(11), 2796–2804 (2007)

    Google Scholar 

  33. A. Daoud, M.T. Abou El-Khair, M. Abdel-Aziz, P. Rohatgi, Fabrication, microstructure and compressive behavior of ZC63 Mg–microballoon foam composites. Compos. Sci. Technol. 67(9), 1842–1853 (2007)

    CAS  Google Scholar 

  34. H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, M. Yoshida, Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting. Mater. Sci. Eng., A 495(1–2), 282–287 (2008)

    Google Scholar 

  35. P.K. Rohatgi, B.F. Schultz, A. Daoud, W.W. Zhang, Tribological performance of A206 aluminum alloy containing silica sand particles. Tribol. Int. 43(1–2), 455–466 (2010)

    CAS  Google Scholar 

  36. B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng., A 530, 87–97 (2011)

    CAS  Google Scholar 

  37. C. Borgonovo, M.M. Makhlouf, Synthesis of die-castable nano-particle reinforced aluminum matrix composite materials by in situ gas-liquid reactions. Metall. Sci. Technol. 30(1) (2012)

  38. L. Ivanchev, S.T. Camagu, G. Govender, Semi-solid high pressure die casting of metal matrix composites produced by liquid state processing, in Solid State Phenomena, vol. 192, ed. by R. Lawrance, R.K. Maynard (Trans Tech Publications, Zurich, 2013), pp. 61–65

    Google Scholar 

  39. G.A.R. Rivero, B.F. Schultz, J.B. Ferguson, N. Gupta, P.K. Rohatgi, Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams. J. Mater. Res. 28(17), 2426–2435 (2013)

    Google Scholar 

  40. J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Al–Al2O3 syntactic foams—part I: effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams. Mater. Sci. Eng. A 582, 415–422 (2013)

    CAS  Google Scholar 

  41. J.B. Ferguson, J.A. Santa Maria, B.F. Schultz, P.K. Rohatgi, Al–Al2O3 syntactic foams—part II: predicting mechanical properties of metal matrix syntactic foams reinforced with ceramic spheres. Mater. Sci. Eng. A 582, 423–432 (2013)

    CAS  Google Scholar 

  42. M.F. Ibrahim, A.M. Samuel, M.S. Soliman, H.R. Ammar, F.H. Samuel, A new technology for the production of Al-B4C metal matrix composites. Trans. AFS Trans. 121, 99–110 (2013)

    CAS  Google Scholar 

  43. L.-Y. Chen, D. Weiss, J. Morrow, X. Jia-Quan, X.-C. Li, A novel manufacturing route for the production of high-performance metal matrix nanocomposites. Manuf. Lett. 1(2–4), 62–65 (2013)

    CAS  Google Scholar 

  44. M. Estruga, L. Chen, H. Choi, X. Li, S. Jin, Ultrasonic-assisted synthesis of surface-clean TiB2 nanoparticles and their improved dispersion and capture in Al-matrix nanocomposites. ACS Appl. Mater. Interfaces 5(17), 8813–8819 (2013)

    CAS  Google Scholar 

  45. J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, N. Gupta, P.K. Rohatgi, Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380–Al2O3 syntactic foams. J. Mater. Sci. 49(3), 1267–1278 (2014)

    CAS  Google Scholar 

  46. P.K. Rohatgi, Al-shape memory alloy self-healing metal matrix composite. Mater. Sci. Eng. A 619, 73–76 (2014)

    CAS  Google Scholar 

  47. M.R. Dehnavi, B. Niroumand, F. Ashrafizadeh, P.K. Rohatgi, Effects of continuous and discontinuous ultrasonic treatments on mechanical properties and microstructural characteristics of cast Al413–SiCnp nanocomposite. Mater. Sci. Eng. A 617, 73–83 (2014)

    CAS  Google Scholar 

  48. J.B. Ferguson, I. Aguirre, H. Lopez, B.F. Schultz, K. Cho, P.K. Rohatgi, Tensile properties of reactive stir-mixed and squeeze cast Al/CuOnp-based metal matrix nanocomposites. Mater. Sci. Eng. A 611, 326–332 (2014)

    CAS  Google Scholar 

  49. L. Xiaochun, Y. Yang, D. Weiss. Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast aluminum alloy A356. Metall. Sci. Technol. 26(2), 12–20 (2013)

    Google Scholar 

  50. E. Omrani, A.D. Moghadam, M. Algazzar, P.L. Menezes, P.K. Rohatgi, Effect of graphite particles on improving tribological properties Al-16Si-5Ni-5Graphite self-lubricating composite under fully flooded and starved lubrication conditions for transportation applications. Int. J. Adv. Manuf. Technol. 87(1–4), 929–939 (2016)

    Google Scholar 

  51. S.K. Pradhan, S. Chatterjee, A.B. Mallick, D. Das, A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites. Perspect. Sci. 8, 529–532 (2016)

    Google Scholar 

  52. W. Liu, C. Cao, X. Jiaquan, X. Wang, X. Li, Molten salt assisted solidification nanoprocessing of Al-TiC nanocomposites. Mater. Lett. 185, 392–395 (2016)

    CAS  Google Scholar 

  53. A.D. Moghadam, E. Omrani, H. Lopez, L. Zhou, Y. Sohn, P.K. Rohatgi, Strengthening in hybrid alumina-titanium diboride aluminum matrix composites synthesized by ultrasonic assisted reactive mechanical mixing. Mater. Sci. Eng. A 702, 312–321 (2017)

    Google Scholar 

  54. M. Baghi, B. Niroumand, R. Emadi, Fabrication and characterization of squeeze cast A413-CSF composites. J. Alloy. Compd. 710, 29–36 (2017)

    CAS  Google Scholar 

  55. L. Pan, Y. Yang, M.U. Ahsan, D.D. Luong, N. Gupta, A. Kumar, P.K. Rohatgi, Zn-matrix syntactic foams: effect of heat treatment on microstructure and compressive properties. Mater. Sci. Eng. A 731, 413–422 (2018)

    CAS  Google Scholar 

  56. Z. Guan, I. Hwang, X. Li, Highly concentrated WC reinforced Ag matrix nanocomposite manufactured by molten salt assisted stir casting. Procedia Manuf. 26, 146–151 (2018)

    Google Scholar 

  57. A. Javadi, S. Pan, X. Li, Scalable manufacturing of ultra-strong magnesium nanocomposites. Manuf. Lett. 16, 23–26 (2018)

    Google Scholar 

  58. I. Hwang, Z. Guan, X. Li, Scalable manufacturing of zinc-tungsten carbide nanocomposites. Procedia Manufacturing 26, 140–145 (2018)

    Google Scholar 

  59. Y. Pazhouhanfar, B. Eghbali, Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater. Sci. Eng. A 710, 172–180 (2018)

    CAS  Google Scholar 

  60. J. Jiang, Y. Wang, Microstructure and mechanical properties of the rheoformed cylindrical part of 7075 aluminum matrix composite reinforced with nano-sized SiC particles. Mater. Des. 79, 32–41 (2015)

    CAS  Google Scholar 

  61. P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, A. Daoud, Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Compos. Part A Appl. Sci. Manuf. 37, 430–437 (2006)

    Google Scholar 

  62. A. Mortensen, V.J. Michaud, M.C. Flemings, Pressure-infiltration processing of reinforced aluminum. JOM 45(1), 36–43 (1993)

    CAS  Google Scholar 

  63. E.M. Klier, A. Mortensen, J.A. Cornie, M.C. Flemings, Fabrication of cast particle-reinforced metals via pressure infiltration. J. Mater. Sci. 26(9), 2519–2526 (1991)

    CAS  Google Scholar 

  64. A. Mortensen, L.J. Masur, J.A. Cornie, M.C. Flemings, Infiltration of fibrous preforms by a pure metal: part I. Theory. Metall. Trans. A 20(11), 2535–2547 (1989)

    Google Scholar 

  65. C. McCullough, H.E. Deve, T.E. Channel, Mechanical response of continuous fiber-reinforced Al2O3- Al composites produced by pressure infiltration casting. Mater. Sci. Eng., A 189(1–2), 147–154 (1994)

    Google Scholar 

  66. J. Yang, D.D.L. Chung, Casting particulate and fibrous metal-matrix composites by vacuum infiltration of liquid metal under inert gas pressure. J. Mater. Sci. 24(10), 3605–3612 (1989)

    CAS  Google Scholar 

  67. M.K. Aghajanian, M.A. Rocazella, J. Tetal Burke, S.D. Keck, The fabrication of metal matrix composites by a pressureless infiltration technique. J. Mater. Sci. 26(2), 447–454 (1991)

    CAS  Google Scholar 

  68. J. Cornie, Advanced pressure infiltration casting technology produces a near-absolute net-shape metal matrix composite components cost competitively. Mater. Technol. 10(3–4), 43–48 (1995)

    Google Scholar 

  69. D.B. Miracle, Metal matrix composites–from science to technological significance. Compos. Sci. Technol. 65(15–16), 2526–2540 (2005)

    CAS  Google Scholar 

  70. W.H. Hunt, D.B. Miracle. Automotive applications of metal-matrix composites. 2001

  71. A. Evans, C. San Marchi, A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey (Springer, Berlin, 2013)

    Google Scholar 

  72. S.P. Rawal, Metal-matrix composites for space applications. JOM 53(4), 14–17 (2001)

    CAS  Google Scholar 

  73. C. Zweben, Thermal Management and Electronic Packaging Applications (Materials Park, ASM International, 2001), pp. 1078–1084

    Google Scholar 

  74. A. Macke, B.F. Schultz, P. Rohatgi, Metal matrix composites. Adv. Mater. Process. 170(3), 19–23 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar P..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajay Kumar, P., Rohatgi, P. & Weiss, D. 50 Years of Foundry-Produced Metal Matrix Composites and Future Opportunities. Inter Metalcast 14, 291–317 (2020). https://doi.org/10.1007/s40962-019-00375-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-019-00375-4

Keywords

Navigation