Skip to main content
Log in

Photo induced dissociation of ferri and ferro cyanide in hydroponic solutions

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The potential for photo-induced dissociation of ferri- and ferro-cyanide was investigated. The overall reactions followed first order kinetics, judged by the free cyanide analyzed in aqueous solution. The dissociation rates for ferri- and ferro-cyanide were mathematically described by the equations: C (CN,t) = C (CN,O)e1.3t and C (CN,t) = C (CN,O)e0.39t, respectively. In addition, photo-induced dissociation of both iron cyanides was enhanced under an alkaline environment than a neutral condition. Results from the temperature-dependent tests indicated that the dissociation rate of ferri- cyanide was significantly higher than that of ferro-cyanide at all treatment temperatures. The kinetic parameter, activation energy (E a ) was also experimentally determined to be 12.02 and 12.32 kJ/mol for ferri- and ferro-cyanide, respectively. The results obtained suggest that both iron cyanides are susceptible to photo-dissociation and the rates are positively correlated to the change of temperatures. The information collectively also has important implications for waste management of iron cyanides as well as for risk assessment in a field trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ebbs, S. D.; Piccinin, R. C.; Goodger, J. Q. D.; Kolev, S. D.; Woodrow, I. W.; Baker, A. J. M., (2008). Transport of ferrocyanide by two eucalypt species and sorghum. Int. J. Phytorem., 10(4), 343–357 (15 pages).

    Article  CAS  Google Scholar 

  • Getoff, N., (2002). Factors influencing the efficiency of radiation-induced degradation of water pollutants. Radiat. Phys. Chem., 65(4–5), 437–446 (10 pages).

    Article  CAS  Google Scholar 

  • Ghosh, R. S.; Dzombak, D. A.; Luthy, R. G.; Nakles, D. V., (1999). Subsurface fate and transport of cyanide species at a manufactured-gas plant site. Water Environ. Res., 71(6), 1205–1216 (12 pages).

    Article  CAS  Google Scholar 

  • Ghosh, R. S.; Nakles, D. V.; Murarka, P.; Neuhauser, E. F., (2004). Cyanide speciation in soil and groundwater at manufactured gas plant (MGP) sites. Environ. Eng. Sci., 21(6), 752–767 (16 pages).

    Article  CAS  Google Scholar 

  • Kim, C.; Zhou, Q. H.; Deng, B. L.; Thornton, E. C.; Xu, H. F., (2001). Chromium (VI) reduction by hydrogen sulfide in aqueous media: Stoichionmetry and kinetics. Environ. Sci. Tech., 35(11), 2219–2225 (7 pages).

    Article  CAS  Google Scholar 

  • Larsen, M.; Trapp, S., (2006). Uptake of iron cyanide complexes into willow trees. Environ. Sci. Tech., 40(6), 1956–1961 (6 pages).

    Article  CAS  Google Scholar 

  • Lechtenberg, M.; Nahrstedt, A., (1999). Naturally occurring glycosides. In: Ikan, R. (Ed.), Cyanogenic Glycosides. Chichester: John Wiley and Sons, 147–191 (45 pages).

    Google Scholar 

  • Mudder, T.; Botz, M., (2001). A guide to cyanide. Mining Environ. Manag., 9(3), 8–12 (5 pages).

    Google Scholar 

  • Meeussen, J. C. L.; Keizer, M. G.; de Haan, F. A. M., (1992). Chemical stability and decomposition rate of iron cyanide complexes in soil solutions. Environ. Sci. Tech., 26(3), 511–516 (6 pages).

    Article  CAS  Google Scholar 

  • Meeussen, J. C. L.; van Riemsdijk, W. H.; van der Zee, S. E. A. T.M., (1995). Transport of complexed cyanide in soil. Geoderma., 67(1), 73–85 (13 pages).

    Article  CAS  Google Scholar 

  • Rader, W. S.; Solujic, L.; Milosavljevic, E. B.; Hendrix, J. L.; Nelson, J. H., (1993). Sunlight-induced photochemistry of aqueous solutions for hexacyanoferrate (II) and (III) ions. Environ. Sci. Tech., 27(9), 1875–1879 (5 pages).

    Article  CAS  Google Scholar 

  • Rennert, T.; Mansfeldt, T., (2002). Sorption of iron-cyanide complexes on goethite in the presence of sulfate and desorption with phosphate and chloride. J. Environ. Qual., 31(3), 745–751 (7 pages).

    Article  CAS  Google Scholar 

  • Samiotakis, M.; Ebbs, S. D., (2004). Possible evidence for transport of an iron cyanide complex by plants. Environ. Poll., 127(2), 169–173 (5 pages).

    Article  CAS  Google Scholar 

  • Salt, D. E.; Smith, R. D.; Raskin, I., (1998). Phytoremediation. Ann. Rev. Plant Physiol. Plant Mol. Biol., 49(3), 643–668 (26 pages).

    CAS  Google Scholar 

  • Sehmel, G. A., (1989). Cyanide and antimony thermodynamic database for the aqueous species and solids for the EPA-MINTEQ geochemical code (PNL-6835). Richland: Pacific Northwest Laboratory.

    Book  Google Scholar 

  • Smith, A.; Mudder, T., (1991). The Chemistry and Treatment of Cyanide Waste. London: Mining Journal Book Ltd.

    Google Scholar 

  • Theis, T. L.; West, M. L., (1986). Effects of cyanide complexation on the adsorption of trace metals at the surface of goethite. Environ. Tech. Lett., 7(1), 309–316 (8 pages).

    CAS  Google Scholar 

  • Theis, T. L.; Young, T. C.; Huang, M.; Knutsen, K. C., (1994). Leachate characteristics and composition of cyanide-bearing wastes from manufactured gas plants. Environ. Sci. Tech., 28(1), 99–106 (8 pages).

    Article  CAS  Google Scholar 

  • White, D. M.; Pilon, T. A.; Woolard, C., (2000). Biological treatment of cyanide containing wastewater. Water Res., 34 (7), 2105–2109 (5 pages).

    Article  Google Scholar 

  • Yngard, R.; Damrongsiri, S.; Osathaphan, K.; Sharma, V. K., (2007). Ferrate (VI) oxidation of zinc-cyanide complex. Chemosphere, 69(5), 729–735 (7 pages).

    Article  CAS  Google Scholar 

  • Yu, X. Z.; Gu, J. D., (2008). Effects of available nitrogen on the uptake and assimilation of ferrocyanide and ferricyanide complexes in weeping willows. J. Hazard. Mater., 156(1–3), 300–307 (8 pages).

    Article  CAS  Google Scholar 

  • Zimmerman, A. R.; Kang, D. H.; Ahn, M. Y.; Hyun, S.; Banks, M. K., (2008). Influence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption. Chemosphere, 70(6), 1044–1051 (8 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X.Z., Peng, X.Y. & Wang, G.L. Photo induced dissociation of ferri and ferro cyanide in hydroponic solutions. Int. J. Environ. Sci. Technol. 8, 853–862 (2011). https://doi.org/10.1007/BF03326268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326268

Keywords

Navigation