Skip to main content
Log in

Association of trace metals with various sedimentary phases in dam reservoirs

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

In the present study sediment and water samples collected from Kowsar Dam reservoir in Kohkiluye and Boyerahmad Province, southwest of Iran, are subjected to bulk digestion and chemical partitioning. The concentrations of nickel, lead, zinc, copper, cobalt, cadmium, manganese and iron in water and bed sediment were determined by atomic absorption spectrometry. The concentrations of metals bounded to five sedimentary phases were estimated. On this basis, the proportions of natural and anthropogenic elements were calculated.The anthropogenic portion of elements are as follows: zinc (96 %)> cobalt (88 %)> iron (78 %)> magnesium (78 %)> nickel (78 %)> copper (66 %)> lead (63 %)> cadmium (59 %). The results show sediment contamination by nickel, cadmium and lead, according to the world aquatic sediments and mean earth crust values. Manganese and copper have strong association with organic matter and are of high portion of sulfide bounded ions. Finally, The degree of sediment contamination was evaluated using enrichment factor, geo-accumulation index (Igeo) and pollution index (IPoll). The sediments were identified to be of high cadmium and lead pollution index. The pattern of pollution intensity according to enrichment factor is as follows; manganese (1.25) < copper (1.63) < zinc (1.93) < cobalt (2.35) < nickel (3.83) < lead (12.63) < cadmium (78.32). Cluster analysis was performed in order to assess heavy metal interactions between water and sediment. Accordingly, nickel, cadmium and copper are earth originated. Zinc, copper and manganese are dominated by pH. All the elemental concentrations in water and sediment are correlated except for sedimental copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Juboury, A. I., (2009). Natural pollution by some heavy metals in the Tigris River, northern Iraq. Int. J. Environ. Res., 3(2), 189–198 (10 pages).

    CAS  Google Scholar 

  • Asaah, V. A.; Abimbola, A. F.; Suh, C. E., (2005). Heavy metal concentrations and distribution in surface soils of the Bassa Industrial Zone 1, Doula, Cameroon. J. Sci. Eng., 31(2A), 147–158 (12 pages).

    Google Scholar 

  • Barretoo, W. J.; Ishikawa, D. N.; Scarminio, I. S.; Costa, J. S., (2008). Fe, Mn, P and S speciation in sediments from the Capivara Hydroelectric dam lake (Brazil) as an indicator of anthropogenic influences. Clean Soil, Air, Water, 36(4), 353–359 (7 pages).

    Article  Google Scholar 

  • Biati, A.; Karbassi, A. R.; Hassani, A. H.; Monavari, S. M.; Moattar, F., (2010). Role of metal species in flocculation rate during estuarine mixing. Int. J. Environ. Sci. Tech., 7(2), 327–336 (10 pages).

    CAS  Google Scholar 

  • Bowen, H. J. M., (1979). Environmental chemistry of the elements, Academic Press, London, 333.

    Google Scholar 

  • Broadley, M. R.; White, P. J.; Hammond, J. P.; Zelko, I.; Lux, A., (2007). Zinc in plants. New Phytol., 173(4), 677–702 (26 pages).

    Article  CAS  Google Scholar 

  • Carver, G. A., (1972). Glacial geology of the mountain lakes wilderness and adjacent parts of the cascade range, Oregon. Ph.D. Dissertation, University of Washington, Seattle.

    Google Scholar 

  • Chapman, P. M., (2000). The sediment quality triad: Then, now and tomorrow. Int. J. Environ. Poll., 13(1–6), 351–356 (6 pages).

    Article  CAS  Google Scholar 

  • Davis, J. B., (1973). Statistic and data analysis in geology, Wiley International, New York, 456–473 (18 pages).

    Google Scholar 

  • De, A. K., (1987). Environmental chemistry, Wiley Eastern Ltd., New Delhi.

    Google Scholar 

  • Forstner, U., (1985). Chemical forms and reactivities of metal in sediments, in: Leschber, R.; Davis, E. D.; Hermite, P. L., Elsevir (Eds.), London, 1–30 (31 pages).

  • Forstner, U.; Ahlf, W.; Calmano, W.; Kersten, M., (1990). Sediment criteria development, In: Helling, D.; Rothe, P.; Forstner, U.; Stoffers, P. (Eds.), sediments and environmental geochemistry: selected aspects and case histories, Berlin, 311–338 (28 pages).

  • Gibs, R. J., (1973). Mechanism of trace metal transport in rivers. Sci., 180(4081), 71–73 (3 pages).

    Article  Google Scholar 

  • Harrison, R. J.; Dunin-Borkowski, R. E.; Putnis, A., (2002). Direct imaging of nanoscale magnetic interactions in minerals. Proc. Natl. Acad. Sci., 99(26), 16556–16561 (6 pages).

    Article  CAS  Google Scholar 

  • Harte, J.; Holdren, C.; Schneider, R.; Shirley, C., (1991). Toxics A to Z, a guide to everyday pollution hazards, University of California Press, Oxford, 478.

    Google Scholar 

  • Horowitz, A. J.; Meybeck, M.; Idlafkih, Z.; Biger, F., (1999). Variations in trace element geochemistry in the Seine river basin based on floodplain deposits and bed sediments. Hydrol. Processes, 13(9), 1329–1340 (12 pages).

    Article  Google Scholar 

  • Huu, H. H.; Rudy, S.; Damme, A. V., (2010). Distribution and contamination status of heavy metals in estuarine sediments near Cau Ong harbor, Ha Long Bay. Vietnam, Geol. Belgica, 13(1–2), 37–47 (11 pages).

    Google Scholar 

  • Jain, C. K.; Singhal, D. C.; Sharma, U. K., (2005). Metal pollution assessment of sediment and water in the river Hindon, India. Environ. Monit. Assess., 105(1–3), 193–207 (15 pages).

    Article  CAS  Google Scholar 

  • Jiao, Y.; Grant, C. A.; Bailey, L. D., (2004). Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat. J. Sci. Food Agr., 84(8), 777–785 (9 pages).

    Article  CAS  Google Scholar 

  • Karbassi, A. R; Monavari, S. M.; Nabi Bidhendi, Gh. R.; Nouri, J., (2008). Metal pollution assessment of sediment and water in the Shur River. Environ. Monit. Assess., 147(1–3), 107–116 (10 pages).

    Article  CAS  Google Scholar 

  • Kho, F. W. L.; Law, P. L.; Lai, S. H.; Oon, Y. W.; Ngu, L. H.; Ting, H. S., (2009). Quantitative dam break analysis on a reservoir earth dam. Int. J. Environ. Sci. Tech., 6(2), 203–210 (8 Pages).

    Google Scholar 

  • Kirk, R. E.; Othmer, D. F., (1985). Kirk-Othmer Concise Encyclopedia of Chemical Technology, Wiley, New York.

  • Lascelles, K.; Morgan, L. G.; Nicholls, D.; Beyersmann, D., (2005). “Nickel Compounds” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim.

    Google Scholar 

  • Lide, D. R., (1998). Handbook of Chemistry and Physics (87 ed.), CRC Press, Boca Raton, FL.

    Google Scholar 

  • Martin, J. M.; Meybeck, M., (1979). Elemental mass-balance of material carried by major world rivers, Mar. Chem., 7(3), 173–206 (34 pages).

    Article  CAS  Google Scholar 

  • Mediolla, L. L.; Domingues, M. C. D.; Sandoval, M. R. G., (2008). Environmental Assessment of an Active Tailings Pile in the State of Mexico (Central Mexico), Res. J. Environ. Sci., 2(3), 197–208 (12 pages).

    Article  Google Scholar 

  • Opuene, K.; Okafor, E. C.; Agbozu, I. E., (2008). Partitioning characteristics of heavy metals in a non-tidal freshwater ecosystem. Int. J. Environ. Res., 2(3), 285–290 (6 pages).

    CAS  Google Scholar 

  • Priju, C. P.; Narayana, A. C., (2007). Heavy and Trace Metals in Vembanad Lake Sediments. Int. J. Environ. Res., 1(4), 280–289 (10 pages).

    CAS  Google Scholar 

  • Rayner-Canham, G.; Overton, T., (2003). Descriptive Organic Chemistry, Macmillan.

  • Rosental, R.; Eagle, G. A.; Orren, M. Y., (1986). Trace metal distribution in different chemical fractions of near shore marine sediments. Estuarine Coastal Shelf Sci., 22(3), 303–324 (22 pages).

    Article  CAS  Google Scholar 

  • Samans, C. H., (1949). Engineering Metals and their Alloys, MacMillan.

  • Schuurmann, G.; Market, B., (1998). Ecotoxicology, ecological fundamentals, chemical exposure, and biological effects. Wiley, New York.

    Google Scholar 

  • Stamatis, N.; Kamidis, N.; Sylaios, G., (2006). Sediment and suspended matter lead contamination in the gulf of Kavala, Greece. Environ. Monit. Assess., 115(1–3), 433–449 (17 pages).

    Article  CAS  Google Scholar 

  • Sutherland, R. A., (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol., 39(6), 611–627 (17 pages).

    Article  CAS  Google Scholar 

  • Taghinia Hejabi, A.; Basavarajappa, H.T.; Qaid Saeed, A. M., (2010). Heavy metal pollution in Kabini river sediments. Int. J. Environ. Res., 4(4), 629–636 (8 pages).

    CAS  Google Scholar 

  • Turekian, K. K.; Wedepohl, K. H., (1961). Distribution of the elements in some major units of earth’s crust. Bull. Geol. Soc. Am., 72(2), 175–192 (18 pages).

    Article  CAS  Google Scholar 

  • Van de Guchte, C., (1992). The sediment quality triad:an integrated approach to assess contaminated sediments, in: P. J. Newman, M. A. Piavaux, R. A. Sweeting, (Eds.), River water quality, ecological assessment and control, Brussels, 417–423 (7 pages).

  • Wiberg, V. E.; Wiberg, N.; Holleman, A. F., (2001). Inorganic Chemistry, Academic Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Torabi M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karbassi, A.R., Torabi, F., Ghazban, F. et al. Association of trace metals with various sedimentary phases in dam reservoirs. Int. J. Environ. Sci. Technol. 8, 841–852 (2011). https://doi.org/10.1007/BF03326267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326267

Keywords

Navigation