Skip to main content
Log in

Estimation of contaminant transport parameters for a tropical sand in a sand tank model

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

This research describes the goals, design and implementation of a quasi natural gradient, laboratory scale, sand tank (aquifer) model experiment. The model was used to study the transport of an inorganic tracer (Chloride) in groundwater, within a tropical aquifer (porous medium) material. Three-dimensional sand tank (1.8 m × 0.3 m × 0.8 m) experiments were conducted to investigate contaminant transport and natural attenuation within the sand tank. In all, 360 samples were collected during 24 sampling sessions, for the three days of the tracer experiments in the Sand Tank. The Owena sand is a poorly graded sand with 88.1 % sand and 11.9 % gravel. Geotechnical properties including; coefficient of uniformity Cu = 2.53, coefficient of gradation Cz = 0.181, hydraulic conductivity K = 5.76 × 10−4 m/s, bulk density p = 1.9 Mg/m3, effective porosity ne = 0.215 and median grain diameter D50 = 0.55 mm, were determined. Other relevant hydraulic and solute transport parameters, such as dispersion coefficients and dispersivities were also established for the tropical soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. H.; Guzman-Osorio, F. J., (2008). Evaluation of land farming and chemico-biological stabilization for treatment of heavily contaminated sediments in a tropical environment. Int. J. Environ. Sci. Tech., 5 (1), 169–178 (10 pages).

    Article  Google Scholar 

  • Adams, R. H.; Guzman-Osorio, F. J.; Zavala Cruz, J., (2008). Water repellency in oil contaminated sandy and clayey soils. Int. J. Environ. Sci. Tech., 5 (4), 445–454 (10 pages).

    Article  CAS  Google Scholar 

  • BS 1377 (1990). Method of test for soil for civil engineering purpose. British Standard Institute, London.

  • Chrysikopoulos, C. V.; Lee, K. Y., (1998). Contaminant transport resulting from multicomponent nonaqueous phase liquid pool dissolution in three-dimensional subsurface formations. J. Contam. Hydrol., 31 (1-2), 1–21 (21 pages).

    Article  CAS  Google Scholar 

  • Cirpka, O. A.; Kitanidis, P. K., (2000). Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments. Water Resour. Res., 36 (5), 1221–1236 (16 pages).

    Article  Google Scholar 

  • Cussler, E. L., (1984). Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, New York.

    Google Scholar 

  • Das, P.; Pal, R.; Chowdhury, A., (2008). Influence of biotic-abiotic factors on the degradation of novaluron in tropical soil. Int. J. Environ. Sci. Tech., 5 (3), 425–429 (5 pages).

    Article  CAS  Google Scholar 

  • Das Braja, M., (1990). Principles of geotechnical engineering. PWS-KENT Publishing Company, Boston, Massachusetts, 7-98.

  • Dela Barre, B. K.; Harmon, T. C.; Chrysikopoulos, C. V., (2002). Measuring and modeling the dissolution of nonideally shaped dense nonaqueous phase liquid pools in saturated porous media. Water Resour. Res., 38 (8), 1133–1148 (16 pages).

    Article  Google Scholar 

  • Domenico, P. A.; Schwartz, F. W., (1990). Physical and chemical hydrogeology. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Freeze, R. A.; Cherry, J. A., (1979). Groundwater. Prentice-Hall, New Jersey, USA.

    Google Scholar 

  • Freyberg, D. L., (1986). A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers. Water Resour. Res., 22 (13), 2031–2046 (16 pages).

    Article  CAS  Google Scholar 

  • Hassan, G.; Reneau, Jr., R. B.; Hagedorn, C.; Jantrania, A. R., (2008). Modeling effluent distribution and nitrate transport through an on-site wastewater system. J. Environ. Qual., 37 (5), 1937–1948 (12 pages).

    Article  CAS  Google Scholar 

  • Held, R. J.; Celia, M. A., (2001). Pore-scale modeling and upscaling of non-aqueous phase liquid mass transfer. Water Resour. Res., 37 (3), 539–549 (11 pages).

    Article  Google Scholar 

  • Iversen, B. V.; Keur, P. V.; Vosgerau, H., (2008). Hydrogeological relationships of sandy deposits: Modeling of two-dimensional unsaturated water and pesticide transport. J. Environ. Qual., 37 (5), 1909–1917 (9 pages).

    Article  CAS  Google Scholar 

  • Jebellie, S. J.; Madani, A.; Prasher, S. O., (2004). Computer simulation of fate and transport of metolachlor in a soil column study. Can. Water Resour. J., 29 (3), 159–170 (12 pages).

    Article  Google Scholar 

  • Jung, Y.; Coulidably, K. M.; Borden, R. C., (2006). Transport of edible oil emulsions in clayey sands: 3D sandbox results and model validation. J. Hydrol. Eng., 11 (3),238–244(7 pages).

    Article  Google Scholar 

  • Kasteel, R.; Vogel, H.; K. Roth, K., (2000). From local hydraulic properties to effective transport in soil. Eur. J. Soil Sci., 51 (1), 81–91 (11 pages).

    Article  Google Scholar 

  • Kim, J.; Park, Y.; Harmon, T. C., (2005). Real-Time parameter estimation for analyzing transport in porous media. Ground Water Monit. R., 25 (2), 78–86 (9 pages).

    Article  Google Scholar 

  • Kleineidam, S.; Rügner, H.; Grathwohl, P., (1999). Impact of grain scale heterogeneity on slow sorption kinetics. Environ. Toxicol. Chem., 18 (8), 1673–1678 (6 pages).

    Article  CAS  Google Scholar 

  • Lee, K. Y.; Chrysikopoulos, C. V., (1998). NAPL pool dissolution in stratified and anistropic porous formations. J. Environ. Eng., 124 (9), 851–862 (12 pages).

    Article  CAS  Google Scholar 

  • Leland, D. F.; Hillel, D., (1981). Scale effects on measurement of dispersivity in a shallow unconfined aquifer. Paper presented at Chapman Conference on Spatial Variability in Hydrologic Modeling. AGU. Fort Collins. CO., July 21-23.

  • MacKay, D. M.; Cherry, J., (1989). Groundwater contamination: Limits of pump-and-treat remediation. Environ. Sci. Tech., 23 (6), 630–636 (7 pages).

    Article  CAS  Google Scholar 

  • Mackay, D. M.; Shiu, W. Y.; Maijanen, A.; Feenstra, S., (1991). Dissolution of non-aqueous phase liquids in groundwater. J. Contam. Hydrol., 8 (1), 23–42 (20 pages).

    Article  CAS  Google Scholar 

  • Meyer, B. R.; Bain, C. A. R.; DeJesus, A. S. M.; Stephenson, D., (1981). Radiotracer evaluation of groundwater dispersion in a multilayer aquifer. J. Hydrol., 50 (1-3), 259–271 (13 pages).

    Article  CAS  Google Scholar 

  • Mirbagheri, S. A.; Hashemi Monfared, S. A., (2009). Pesticide transport and transformation modeling in soil column and groundwater contamination prediction. Int. J. Environ. Sci. Tech., 6 (2), 233–242 (10 pages).

    CAS  Google Scholar 

  • Ola, S. A. (1983). Geotechnical properties of some Nigerian lateriic soils.Tropical soils of Nigeria in engineering practice. in: Ola, S. A. (Ed.), 61-84.

  • Olaf, A. C.; Olsson, A.; Ju, Q.; Rahman, A; Grathwohl, P., (2003). Determination of Transverse Dispersion Coefficients from Reactive Plume Lengths., Groundwater, 44 (2), 212–221 (10 pages).

    Google Scholar 

  • Pignatello, J. J., (1989). Sorption dynamics of organic compounds in soils and sediments. in: Sawney, B. L.; Brown, K. (Eds.), Reactions and movement of organic chemicals in soils. Soil Science Society of America, Madison, Wisconsin, 45–81.

    Google Scholar 

  • Plamer, C. M., (1992). Principles of contaminant hydrogeology. Lewis Publishers, Chelsea, Michigan, USA.

    Google Scholar 

  • Ranjan, G.; Rao, A. S. R., (2000). Basic and applied soil mechanics. New age international (P) limited, publisher, 100-101.

  • Simpson, M. J.; Clement, T. P.; Gallop, T. A., (2003). Laboratory and numerical investigation of flow and transport near a seepage-face boundary. Ground water, 41 (5), 690–700 (10 pages).

    Article  CAS  Google Scholar 

  • Sudicky, E. A., (1986). A natural gradient tracer experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res., 22 (13), 2069–2082 (14 pages).

    Article  CAS  Google Scholar 

  • Torres, L. G. B.; Climent, M.; Saquelares, J.; Bandala, E. R.; Urquiza, G.; Iturbe, R., (2007). Characterization and treatability of a contaminated soil from an oil exploration zone. Int. J. Environ. Sci. Tech., 4 (3), 311–322 (12 pages).

    Google Scholar 

  • Ursino, N.; Gimmi, T., (2004). Combined effect of heterogeneity, anisotropy and saturation on steady state flow and transport: Structure recognition and numerical simulation. Water Resour. Res., 40 (1), WO1514.

  • Victor, S., (2008). Nigerians die annually from water diseases- WHO. THE PUNCH Newspaper, Wednesday, July 2, 9.

  • Walton C. W, (1991). Principle of Groundwater Engineering. Lewis Publishers. Michigan.

    Google Scholar 

  • Wang, G.; Lu, Y.; Wang, T.; Zhang, X.; Han, J.; Luo, W.; Shi, Y.; Li, J.; Jiao, W., (2009). Factors influencing the spatial distribution of organochlorine pesticides in soils surrounding chemical industrial. parks. J. Environ. Qual., 38 (1), 180–187 (8 pages).

    Article  CAS  Google Scholar 

  • Wiedemeier, T. H.; Rifai, H. S.; Newell, C. J.; Wilson, J. T., (1999). Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley and Sons Inc., New York.

    Book  Google Scholar 

  • Wildenschild, D.; Jensen, K. H.; Villholth, K.; Illangasekare, T. H., (1994). A laboratory analysis of the effect of macropores on solute transport. Ground Water, 32 (1), 381–389 (9 pages).

    Article  CAS  Google Scholar 

  • Zhang, Y.; Zhu, D.; Yu, H., (2008). Sorption of aromatic compounds to clay mineral and model humic substance— clay complex: effects of solute structure and exchangeable cation. J. Environ. Qual., 37 (3), 817–823 (7 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Ojuri Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojuri, O.O., Ola, S.A. Estimation of contaminant transport parameters for a tropical sand in a sand tank model. Int. J. Environ. Sci. Technol. 7, 385–394 (2010). https://doi.org/10.1007/BF03326148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326148

Keywords

Navigation