Skip to main content
Log in

Application of water pinch technology for water and wastewater minimization in aluminum anodizing industries

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

This study aims to describe the application of water pinch technology in industrial water consumption management in aluminum anodizing industry. Water pinch analysis is a systematic technique for designing, optimization and retrofitting of energy, mass and water recovery networks. The selection of different operations existing in an industry has an important role in correctness of application of pinch technology. Water usages in anodizing industry are various, but researches have been shown that, it has the best efficiency on the selection of rinsing chambers to pinch technology. There are different methods in pinch technology mostly based on mass transfer of single or multiple contaminants. In this research, a new method is used to select effective contaminant to be applied to pinch analysis. This research is based on Mann and Liu’s method in single contaminant. But “the guide for classification of raw water, wastewater and recycled water for industrial and recreation” is chosen to use a complex of index contaminants as a single contaminant. This method is very simple and applicable for various industrial processes. By an index contaminant like total dissolved solids, the water usage reduced about 6.7 %. Using pinch technology and this new approach in three rinsing chambers, water usage reduced about 14.4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour, M.; Mirbagheri, S. A.; Monavvari, M.; Javid, A. H.; Zarei, H., (2009). Conceptual hydrosalinity model for prediction of salt load from wastewater flows into soil and groundwater. Int. J. Environ. Sci. Tech., 6 (3), 359–368 (10 pages).

    Article  CAS  Google Scholar 

  • Alva-Argaeza, A.; Vallianatos, A.; Kokossis, A., (1999). A multi- contaminant transshipment model for mass exchange networks and wastewater minimization problems. Comput. Chem. Eng., 23 (10), 1439–1453 (15 pages).

    Article  Google Scholar 

  • Alva-Argaez, A.; Kokossis, A. C.; Robin, S., (2007). The design of water using systems in petroleum refining using a water pinch decomposition. Chem. Eng. J., 128 (1), 33–46 (14 pages).

    Article  CAS  Google Scholar 

  • Carlos, E.; Mariano, R.; Victor, H., (2007). Multi-objective optimization of water-using systems. Eur. J. Oper. Res., 181 (3), 1691–1707 (17 pages).

    Article  Google Scholar 

  • Castro, P.; Matos, H.; Fernandes, M. C., (1999). Improvements for mass exchange networks design. Chem. Eng. Sci., 54 (11), 1649–1665 (17 pages).

    Article  CAS  Google Scholar 

  • Dhole, V. R.; Ramchandani, N., (1996). Make your process water pay for itself. Chem. Eng., 103 (1), 100–103 (4 pages).

    CAS  Google Scholar 

  • El-Halwagi, M. M.; Manousiouthakis, V., (1989). Synthesis of mass exchange networkers. AIChEJ, 35 (8), 1233–1244 (11 pages).

    Article  CAS  Google Scholar 

  • El-Halwagi, M. M.; Gabriel, F.; Harell, D., (2000). Rigorous graphical targeting for resource conservation via material recycle / reuse networks. Ind. Eng. Chem. Resour., 42 (19), 4319–4328 (10 pages).

    Article  Google Scholar 

  • Gomes, J. F. S.; Eduardo, M. Q; Fenando, L. P., (2007). Design procedure for water / wastewater minimization: Single contaminant. J. Clea. Produc., 15 (5), 474–485 (12 pages).

    Article  Google Scholar 

  • Hallale, N., (2002). A new graphical targeting method for water minimization. Adv. Environ. Res., 6 (3), 377–390 (14 pages).

    Article  CAS  Google Scholar 

  • Igbinosa, E. O.; Okoh, A. I., (2009). Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. Int. J. Environ. Sci. Tech., 6 (2), 175–182 (8 pages).

    CAS  Google Scholar 

  • Jezowski, J., (2008). Review and analysis off approaches for designing optimum industrial water networks. Chem. Process Eng., 29, 663–681 (19 pages).

    Google Scholar 

  • Juliana, F. S.; Eduardo, M. Q.; Fernando, L. P. P., (2007). Design procedure for water/wastewater minimization: Single contaminant. J. Clea. Product., 15 (5), 474–485 (12 pages).

    Article  Google Scholar 

  • Kutepove, A. M.; Meshalkin, V. P.; Nevskii, A. V., (2002). Modified water pinch method for desining resource efficient chemical engineering systems. Doklady Chem., 383 (4-6) 123–127 (5 pages).

    Article  Google Scholar 

  • Kai, C.; Xiao, F.; Hang, M., (2007). Pinch multi-agent genetic algorithm for optimizing water using networks. Comput. Chem. Eng., 31 (12), 1565–1575 (11 pages).

    Article  Google Scholar 

  • Linnhof, B.; Hindmarsh, E., (1970). The pich designing method for heat exchanger networks. Chem. Eng. Sci., 38 (5), 745–763 (19 pages).

    Google Scholar 

  • Manan, Z. A.; Wan Alwi, S. R.; Vjanag, Z., (2006). Water pinch analysis for an urbun system: A case study on the sultan Islmail Mosque at the Univercity Technology Malaysia (UTM). Desalination, 194 (1-3), 52–68 (17 pages).

    Article  CAS  Google Scholar 

  • Mann, J.; Liu, A.Y., (1999). Industrial water reuse and wastwater minimization. McGraw-Hill Publication.

  • Mubarak Ebrahm, A. K., (2000). Pinch technology: An efficient tool for chemical-plant engineering and capital-cast saving. Appl. Energ., 65 (1-4), 45–49 (5 pages).

    Article  Google Scholar 

  • Panjeshahi, M. H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech., 5 (2), 251–262 (12 pages).

    Article  Google Scholar 

  • Rabie, A. H.; El-Halwagi, M. M., (2008). Synthesis and sscheduling of optimal batch water networks. Chinese J. Chem. Eng., 16 (3), 474–479 (5 pages).

    Article  CAS  Google Scholar 

  • Sorin, M.; Bedard, S., (1999). The global pinch point in water reuse networks. Institution of Chemical Engineers. Trans. IChemE. Part B., 77, 305–308 (4 pages).

    Article  CAS  Google Scholar 

  • Schneider, Z.; Brouckart, C. J.; Buckley, C. A., (2000). Using water pinch analysis to reduce effluent in the production of L-Lysine. WISA Biennial Conference, Sun City, South Africa. Song, L.; Shaobing, C. A. I.; Pingjing. Y. A. O., (2006). A new method for designing water network based on variable removal ration treatment process, 1 6th. European Symposium on Computer Aided Process Engineering and 19th. International Symposium on Process Systems Engineering, Published by Elsevier B.V.

  • Soon, K. H.; Ho-Kyung, L.; In-Beum, L., (2002). Modified approach of wastewater minimization in multiole contaminant system. Theor. Ap. Chem. Eng., 8 (2), 3081–3084 (4 pages).

    Google Scholar 

  • Shaobo, H.; Hefei, Z., (2008). A hybrid solar desalination process of the multi-effect humidification dehumidification and basin- type unit. Desalination, 220 (1-3), 552–557 (6 pages).

    Article  Google Scholar 

  • Shoaib, A. M., Said, M. A., Moustafa, E. A., (2008). A hierarchical approach for the synthesis of batch water networks. Comput. Chem. Eng., 32 (3), 530–539 (10 pages).

    Article  CAS  Google Scholar 

  • Thaokozani, M., (2005). Wastewater minimisation using central reusable water storage in batch plant. Comput. Chem. Eng. 29 (7), 1631–1646 (16 pages).

    Article  Google Scholar 

  • Vander Bruggen, B.; Braeken, L., (2006). The challeng of zero discharge from water balance to regeneration. Desalination, 188 (1-3), 177–183 (7 pages).

    Article  CAS  Google Scholar 

  • Wang, Y. P.; Smith, R., (1994). Wastewater minimization. Chem. Eng. Sci., 49, 981–1006 (26 pages).

    Article  CAS  Google Scholar 

  • Wan Alwi, S. R.; Manan, Z. A., (2008). A holistic framework for design of cost effective minimum water utilization network, J. Environ. Manage., 88 (2), 219–259 (41 pages).

    Article  CAS  Google Scholar 

  • Yu-Der, L.; Jun-Hong, C.; Jian-Kai, C.; Hsiao-Ping, H.; Cheng-Ching, Y., (2008). Process alternative for methyl acetate conversion using reactive distillation. Hydrolysis. Chem. Eng. Sci., 63 (6), 1668–1682 (15 pages).

    Article  Google Scholar 

  • Zhaolin, G.; Zhonghua, T.; Nan, X. Y. L., (2007). Retrofitting of a distillery based on process synthesis. Energ. Convers. Manage., 48 (2), 3335–3343 (8 pages).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Khezri Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khezri, S.M., Lotfi, F., Tabibian, S. et al. Application of water pinch technology for water and wastewater minimization in aluminum anodizing industries. Int. J. Environ. Sci. Technol. 7, 281–290 (2010). https://doi.org/10.1007/BF03326138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326138

Keywords

Navigation