Skip to main content
Log in

Femur bone mineral density, age and fracture type in 300 hip-fractured women

  • Original Articles
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims: Several studies showed that cervical and trochanteric hip fractures were associated with different levels of bone mineral density (BMD). Our aim was to investigate the association between femur BMD and hip fracture type at different ages. Methods: We studied 300 postmenopausal women affected by their first hip fracture. 17 women could not undergo BMD measurement and were excluded. The fractures of the remaining 283 women were classified as either cervical (N=129) or trochanteric (N=154). The BMD of the unfractured femur was assessed by DXA. Results: The women with trochanteric fracture had significantly lower BMD than those with cervical fracture at four sites: total proximal femur (p<0.001), trochanter (p<0.001), intertrochanteric area (p<0.01), and Ward’s triangle (p<0.05). Logistic multiple regression showed that the association between hip fracture type and BMD was independent of age, weight, height, time between fracture occurrence and DXA assessment, number of concomitant diseases and number of drugs administered when BMD was evaluated at total proximal femur (p<0.001), trochanter (p<0.001), and intertrochanteric area (p<0.01). Age stratification showed that BMD was actually lower in the group with trochanteric fracture in the women aged 69 years and younger, and in those aged 80 years and older, but not in the intermediate age group (70–79 years). Conclusions: Data confirm previous reports showing that the two types of hip fractures are associated with different levels of BMD. Moreover, we show that the role played by BMD as a determinant of the hip fracture type varies with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenspan S., Myers E., Maitland L., Kido T., Krasnow M., Hayes W. Trochanteric bone mineral density is associated with type of hip fracture in the elderly. J. Bone Miner. Res. 9: 1889–1894, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Karlsson M., Johnell O., Nilsson B., Sernbo I., Obrant K. Bone mineral mass in hip fracture patients. Bone 14: 161–165, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Mautalen C., Vega E., Gonzales D., Carrilero P., Otano A., Silberman F. Ultrasound and dual x-ray absorptiometry densitometry in women with hip fracture. Calcif Tissue Int. 57: 165–168, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Nakamura N., Kyou T., Takaoka K., Ohzono K., Ono K. Bone mineral density in the proximal femur and hip fracture type in the elderly. J. Bone Miner. Res. 7: 755–759, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Vega E., Mautalen C., Gomez H., Garrido A., Melo L., Sahores A. Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur. Osteoporos. Int. 1: 81–86, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Chevalley T., Rizzoli R., Nydegger V., Slosman D., Tkatch L., Rapin C., Vasey H., Bonjour J. Preferential low bone mineral density of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporos. Int. 1: 147–154, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Dretakis E., Papakitsoue K., Kontakis G., Dretakis K., Psarakis S., Steriopoulos K. Bone mineral density, body mass index and hip axis length in postmenopausal Cretan women with cervical and trochanteric fractures. Calcif. Tissue Int. 64: 257–258, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Mautalen C., Vega E., Einhorn T. Are the etiologies of cervical and trochanteric hip fractures different? Bone 18: 133–137, 1996.

    Google Scholar 

  9. Dirschl D., Henderson R., Oakley W. Accelerated bone mineral loss following a hip fracture: a prospective longitudinal study. Bone 21: 79–82, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Neander G., Adolphson P., Hedstrom M., von Sivers K., Dahlborn M., Dalen N. Decrease in bone mineral density and muscle mass after femoral neck fracture. A quantitative computed tomography study in 25 patients. Acta Orthop. Scand. 68: 451–455, 1997.

    Article  CAS  Google Scholar 

  11. Fox K., Cummings S., Williams E., Stone K. Femoral neck and intertrochanteric fractures have different risk factors: a prospective study. Osteoporos. Int. 11: 1018–1023, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Wolfson L. Gait and balance dysfunction: a model of the interaction of age and disease. Neuroscientist 7: 178–183, 2001.

    Article  PubMed  CAS  Google Scholar 

  13. Dretakis K., Dretakis E., Papakitsou E., Psarakis S., Steriopoulos K. Possible predisposing factors for the second hip fracture. Calcif. Tissue Int. 62: 366–369, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Finsen V., Benum P. The second hip fracture. An epidemiologic study. Acta Orthop. Scand. 57: 431–433, 1986.

    Article  CAS  Google Scholar 

  15. Schroder H., Petersen K., Erlandsen M. Occurrence and incidence of the second hip fracture. Clin. Orthop. 289: 166–169, 1993.

    PubMed  Google Scholar 

  16. Schott A., Weill-Engerer S., Hans D., Duboeuf F., Delmas P., Meunier P. Ultrasound discriminates patients with hip fractures equally well as dual energy X-ray absorptiometry and independently of bone mineral density. J. Bone Miner. Res. 10: 243–249, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Lips P., Taconis W., Van Ginkel F., Netelenbos J. Radiologic morphometry in patients with femoral neck fractures and elderly control subjects. Clin. Orthop. Rel. Res. 183: 64–70, 1984.

    Google Scholar 

  18. Gallagher J., Melton R., Riggs B., Bergstrath E. Epidemiology of fractures of the proximal femur in Rochester, Minnesota. Clin. Orthop. Rel. Res. 150: 163–171, 1980.

    Google Scholar 

  19. Uitewaal P., Lips P., Netelenbos J. An analysis of bone structure in patients with hip fracture. Bone. Min. 3: 63–73, 1987.

    CAS  Google Scholar 

  20. Nordin B., Peacock M., Aaron J., Crilly R., Heyburn P., Horsman A., Marshall D. Osteoporosis and osteomalacia. Clin. Endocrinol. Metab. 9: 177–205, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Gluer C., Cummings S., Pressman A., Li J., Gluer K., Faulkner K., Grampp S., Genant H. Prediction of hip fractures from pelvic radiographs: The study of osteoporotic fractures. J. Bone Miner. Res. 9: 671–677, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Lawton J., Baker M., Dickson R. Femoral neck fractures: two populations. Lancet 9: 70–72, 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Di Monaco M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Monaco, M., Di Monaco, R., Mautino, F. et al. Femur bone mineral density, age and fracture type in 300 hip-fractured women. Aging Clin Exp Res 14, 47–51 (2002). https://doi.org/10.1007/BF03324417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324417

Keywords

Navigation