Skip to main content

Advertisement

Log in

Femoral bone mineral density at the time of hip fracture is higher in women with versus without type 2 diabetes mellitus: a cross-sectional study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

To compare femoral bone mineral density (BMD) levels in hip-fracture women with versus without type 2 diabetes mellitus (T2DM). We hypothesized that BMD levels could be higher in the women with T2DM than in controls and we aimed to quantify the BMD discrepancy associated with the presence of T2DM.

Methods

At a median of 20 days after the occurrence of an original hip fracture due to fragility we measured BMD by dual-energy x-ray absorptiometry at the non-fractured femur.

Results

We studied 751 women with subacute hip fracture. Femoral BMD was significantly higher in the 111 women with T2DM than in the 640 without diabetes: mean T-score between-group difference was 0.50, (95% CI from 0.30 to 0.69, P < 0.001). The association between the presence of T2DM and femoral BMD persisted after adjustment for age, body mass index, hip-fracture type, neurologic diseases, parathyroid hormone, 25-hydroxyvitamin D and estimated glomerular filtration rate (P < 0.001). For a woman without versus with T2DM, the adjusted odds ratio to have a femoral BMD T-score below the threshold of − 2.5 was 2.13 (95% CI from 1.33 to 3.42, P = 0.002).

Conclusions

Fragility fractures of the hip occurred in women with T2DM at a femoral BMD level higher than in control women. In the clinical assessment of fracture risk, we support the adjustment based on the 0.5 BMD T-score difference between women with and without T2DM, although further data from robust longitudinal studies is needed to validate the BMD-based adjustment of fracture risk estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [MDM], upon reasonable request.

References

  1. Chen W, Mao M, Fang J, Xie Y, Rui Y (2022) Fracture risk assessment in diabetes mellitus. Front Endocrinol (Lausanne) 13:961761. https://doi.org/10.3389/fendo.2022.961761

    Article  PubMed  Google Scholar 

  2. Jiang N, Xia W (2018) Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int 29:1721–1736. https://doi.org/10.1007/s00198-018-4532-7

    Article  PubMed  CAS  Google Scholar 

  3. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL, IOF Bone and Diabetes Working Group (2017) Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13:208–219. https://doi.org/10.1038/nrendo.2016.153

    Article  PubMed  CAS  Google Scholar 

  4. Hofbauer LC, Busse B, Eastell R et al (2022) Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol 10:207–220. https://doi.org/10.1016/S2213-8587(21)00347-8

    Article  PubMed  Google Scholar 

  5. Khosla S, Samakkarnthai P, Monroe DG, Farr JN (2021) Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol 17:685–697. https://doi.org/10.1038/s41574-021-00555-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ferrari SL, Abrahamsen B, Napoli N, Bone and Diabetes Working Group of IOF et al (2018) Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int 29:2585–2596. https://doi.org/10.1007/s00198-018-4650-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu J, Curtis EM, Cooper C, Harvey NC (2019) State of the art in osteoporosis risk assessment and treatment. J Endocrinol Invest 42:1149–1164. https://doi.org/10.1007/s40618-019-01041-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Agarwal A, Leslie WD, Nguyen TV, Morin SN, Lix LM, Eisman JA (2022) Performance of the Garvan Fracture Risk Calculator in individuals with diabetes: A registry-based cohort study. Calcif Tissue Int 110:658–665. https://doi.org/10.1007/s00223-021-00941-1

    Article  PubMed  CAS  Google Scholar 

  9. Giangregorio LM, Leslie WD, Lix LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27:301–308. https://doi.org/10.1002/jbmr.556

    Article  PubMed  Google Scholar 

  10. Maggi S, Siviero P, Wetle T, Besdine RW, Saugo M, Crepaldi G, Hip Fracture Study Group (2010) A multicenter survey on profile of care for hip fracture: predictors of mortality and disability. Osteoporos Int 21:223–231. https://doi.org/10.1007/s00198-009-0936-8

    Article  PubMed  CAS  Google Scholar 

  11. Abraham DS, Barr E, Ostir GV, Hebel JR, Golden J, Gruber-Baldini AL (2019) Residual disability, mortality, and nursing home placement after hip fracture over 2 decades. Arch Phys Med Rehabil 100:874–882. https://doi.org/10.1016/j.apmr.2018.10.008

    Article  PubMed  Google Scholar 

  12. Schousboe JT, Morin SN, Kline GA, Lix LM, Leslie WD (2022) Differential risk of fracture attributable to type 2 diabetes mellitus according to skeletal site. Bone 154:116220. https://doi.org/10.1016/j.bone.2021.116220

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz AV, Vittinghoff E, Bauer DC, Study of Osteoporotic Fractures (SOF) Research Group; Osteoporotic Fractures in Men (MrOS) Research Group; Health, Aging, and Body Composition (Health ABC) Research Group et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192. https://doi.org/10.1001/jama.2011.715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hu L, Li T, Zou Y, Yin XL, Gan H (2021) The clinical value of the RA-adjusted fracture risk assessment tool in the fracture risk prediction of patients with type 2 diabetes mellitus in China. Int J Gen Med 14:327–333. https://doi.org/10.2147/IJGM.S296399

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D (2018) Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD registry. J Bone Miner Res 33:1923–1930. https://doi.org/10.1002/jbmr.3538

    Article  PubMed  Google Scholar 

  16. Chiodini I, Gaudio A, Palermo A et al (2021) Management of bone fragility in type 2 diabetes: perspective from an interdisciplinary expert panel. Nutri Metab Cardiovasc Dis 31:2210–2233. https://doi.org/10.1016/j.numecd.2021.04.014

    Article  CAS  Google Scholar 

  17. Wang H, Ba Y, Xing Q, Du JL (2019) Diabetes mellitus and the risk of fractures at specific sites: a meta-analysis. BMJ Open 9:e024067. https://doi.org/10.1136/bmjopen-2018-024067

    Article  PubMed  PubMed Central  Google Scholar 

  18. Koromani F, Oei L, Shevroja E et al (2020) Vertebral fractures in individuals with type 2 diabetes: More than skeletal complications alone. Diabetes Care 43:137144. https://doi.org/10.2337/dc19-0925

    Article  Google Scholar 

  19. Shan PF, Wu XP, Zhang H, Cao XZ, Yuan LQ, Liao EY (2011) Age-related bone mineral density, osteoporosis rate and risk of vertebral fracture in mainland Chinese women with type 2 diabetes mellitus. J Endocrinol Invest 34:190–196. https://doi.org/10.1007/BF03347065

    Article  PubMed  CAS  Google Scholar 

  20. Vilaca T, Walsh J, Eastell R (2019) Discordant pattern of peripheral fractures in diabetes: a meta-analysis on the risk of wrist and ankle fractures. Osteoporos Int 30:135–143. https://doi.org/10.1007/s00198-018-4717-0

    Article  PubMed  CAS  Google Scholar 

  21. Caffarelli C, Alessi C, Nuti R, Gonnelli S (2014) Divergent effects of obesity on fragility fractures. Clin Interv Aging 9:1629–1636. https://doi.org/10.2147/CIA.S64625

    Article  PubMed  PubMed Central  Google Scholar 

  22. Napoli N, Conte C, Pedone C et al (2019) Effect of insulin resistance on BMD and fracture risk in older adults. J Clin Endocrinol Metab 104:3303–3310. https://doi.org/10.1210/jc.2018-02539

    Article  PubMed  PubMed Central  Google Scholar 

  23. Komorita Y, Iwase M, Fujii H et al (2017) Serum adiponectin predicts fracture risk in individuals with type 2 diabetes: the Fukuoka Diabetes Registry. Diabetologia 60:1922–1930. https://doi.org/10.1007/s00125-017-4369-1

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura Y, Nakano M, Suzuki T et al (2020) Two adipocytokines, leptin and adiponectin, independently predict osteoporotic fracture risk at different bone sites in postmenopausal women. Bone 137:115404. https://doi.org/10.1016/j.bone.2020.115404

    Article  PubMed  CAS  Google Scholar 

  25. Di Monaco M, Vallero F, Di Monaco R, Mautino F, Cavanna A (2003) Fat body mass, leptin and femur bone mineral density in hip-fractured women. J Endocrinol Invest 26:1180–1185. https://doi.org/10.1007/BF03349154

    Article  PubMed  Google Scholar 

  26. Cianferotti L, Cipriani C, Corbetta S et al (2023) Bone quality in endocrine diseases: determinants and clinical relevance. J Endocrinol Invest. https://doi.org/10.1007/s40618-023-02056-w

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ho-Pham LT, Nguyen TV (2019) Association between trabecular bone score and type 2 diabetes: a quantitative update of evidence. Osteoporos Int 30:2079–2085. https://doi.org/10.1007/s00198-019-05053-z

    Article  PubMed  CAS  Google Scholar 

  28. Haeri NS, Kotlarczyk MP, Perera S, Greenspan SL (2022) Diabetes mellitus is associated with poor bone microarchitecture in older adults residing in long-term care facilities. J Osteoporos. https://doi.org/10.1155/2022/2522014

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim JH, Choi HJ, Ku EJ et al (2015) Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab 100:475–482. https://doi.org/10.1210/jc.2014-2047

    Article  PubMed  CAS  Google Scholar 

  30. Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM (2014) Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int 25:1969–1973. https://doi.org/10.1007/s00198-014-2704-7

    Article  PubMed  CAS  Google Scholar 

  31. Shieh A, Greendale GA, Cauley JA et al (2022) Prediabetes and insulin resistance are associated with lower bone score (TBS): cross-sectional results from the study of women’s health across the nation TBS study. Osteoporos Int 33:1365–1372. https://doi.org/10.1007/s00198-022-06325-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Delbari N, Rajaei A, Oroei M, Ahmadzadeh A, Farsad F (2021) A comparison between femoral neck and LS-BMD with LS-TBS in T2DM patients: a case control study. BMC Musculoskel Dis 22:582. https://doi.org/10.1186/s12891-021-04471-7

    Article  Google Scholar 

  33. Chuang TL, Chuang MH, Wang YF, Koo M (2022) Comparison of Trabecular Bone Score-adjusted fracture risk assessment (TBS-FRAX) and FRAX tools for identification of high fracture risk among Taiwanese adults aged 50 to 90 years with or without prediabetes and diabetes. Medicina (Kaunas) 58:1766. https://doi.org/10.3390/medicina58121766

    Article  PubMed  Google Scholar 

  34. Leslie WD, Aubry-Rozier B, Lamy O, Hans D, Manitoba Bone Density P (2013) TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 98:602–609. https://doi.org/10.1210/jc.2012-3118

    Article  PubMed  CAS  Google Scholar 

  35. Palomo T, Dreyer P, Muszkat P et al (2022) Effect of soft tissue noise on trabecular bone score in postmenopausal women with diabetes: a cross sectional study. Bone 157:116339. https://doi.org/10.1016/j.bone.2022.116339

    Article  PubMed  Google Scholar 

  36. Caffarelli C, Tomai Pitinca MD, Al Refaie A, Ceccarelli E, Gonnelli S (2022) Ability of radiofrequency echographic multispectrometry to identify osteoporosis status in elderly women with type 2 diabetes. Aging Clin Exp Res 34:121–127. https://doi.org/10.1007/s40520-021-01889-

    Article  PubMed  Google Scholar 

  37. Behanova M, Haschka J, Zwerina J et al (2021) The doubled burden of diabetic bone disease: hip fracture and post-hip fracture mortality. Eur J Endocrinol 184:627–636. https://doi.org/10.1530/EJE-20-1155

    Article  PubMed  CAS  Google Scholar 

  38. Shen Q, Ma Y (2022) Impact of diabetes mellitus on risk of major complications after hip fracture: a systematic review and meta-analysis. Diabetol Metab Syndr 14:51. https://doi.org/10.1186/s13098-022-00821-0

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sheu A, Bliuc D, Tran T, White CP, Center JR (2022) Fractures in type 2 diabetes confer excess mortality: the Dubbo osteoporosis epidemiology study. Bone 159:116373. https://doi.org/10.1016/j.bone.2022.116373

    Article  PubMed  Google Scholar 

  40. Giovanelli L, Aresta C, Favero V et al (2021) Hidden hypercortisolism: a too frequently neglected clinical condition. J Endocrinol Invest 44:1581–1596. https://doi.org/10.1007/s40618-020-01484-2

    Article  PubMed  CAS  Google Scholar 

  41. Nishikawa H, Fukunishi S, Asai A, Yokohama K, Ohama H, Nishiguchi S (2021) Sarcopenia, frailty and type 2 diabetes mellitus (Review). Mol Med Rep 24:854. https://doi.org/10.3892/mmr.2021.12494

    Article  PubMed  CAS  Google Scholar 

  42. Di Monaco M, Castiglioni C, Bardesono F, Freiburger M, Milano E, Massazza G (2022) Is sarcopenia associated with osteoporosis? A cross-sectional study of 262 women with hip fracture. Eur J Phys Rehabil Med 58:638–645. https://doi.org/10.23736/S1973-9087.22.07215-X

    Article  PubMed  Google Scholar 

  43. Mukka S, Knutsson B, Krupic F, Sayed-Noor AS (2017) The influence of cognitive status on outcome and walking ability after hemiarthroplasty for femoral neck fracture: a prospective cohort study. Eur J Orthop Surg Traumatol 27:653–658. https://doi.org/10.1007/s00590-016-1873-9

    Article  PubMed  Google Scholar 

  44. Soderqvist A, Ekstrom W, Ponzer S et al (2009) Prediction of mortality in elderly patients with hip fractures: a two-year prospective study of 1,944 patients. Gerontology 55:496–504. https://doi.org/10.1159/000230587

    Article  PubMed  Google Scholar 

  45. Morghen S, Gentile S, Ricci E, Guerini F, Bellelli G, Trabucchi M (2011) Rehabilitation of older adults with hip fracture: cognitive function and walking abilities. J Am Geriatr Soc 59:1497–1502. https://doi.org/10.1111/j.1532-5415.2011.03496.x

    Article  PubMed  Google Scholar 

  46. Di Monaco M, Castiglioni C, Di Carlo S et al (2019) Classes of vitamin D status and functional outcome after hip fracture: a prospective, short-term study of 1350 inpatients. Eur J Phys Rehabil Med 55:56–62. https://doi.org/10.23736/S1973-9087.18.05191-2

    Article  PubMed  Google Scholar 

  47. Bardesono F, Trombetta S, Gullone L et al (2022) A screening test is not enough to define the prognostic role of cognitive impairment after hip fracture: a short-term prospective study. Aging Clin Exp Res 34:2977–2984. https://doi.org/10.1007/s40520-022-02233-6

    Article  PubMed  Google Scholar 

  48. Li S, Zhang J, Zheng H, Wang X, Liu Z, Sun T (2019) Prognostic role of serum albumin, total lymphocyte count, and Mini Nutritional Assessment on outcomes after geriatric hip fracture surgery: a meta-analysis and systematic review. J Arthroplasty 34:1287–1296. https://doi.org/10.1016/j.arth.2019.02.003

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

MDM: conceived the first idea of the study and planned it. He interpreted data and wrote the first draft of the manuscript and its final version. CC: co-conceived the idea of the study. She was implicated with the management of the patients and collected clinical data. She helped to write the first draft of the manuscript and commented on the following drafts. FB and MF: were implicated with the management of the patients and collected clinical data. They contributed to plan and perform the study. They commented on manuscript drafts. EM: contributed to collect clinical data (he was the chief of the Division where the study was conducted). He commented on the first draft of the manuscript and on the successive versions. GM: co-conceived the idea of the study. He contributed to write the final version. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to M. Di Monaco.

Ethics declarations

Conflict of interest

All authors have no financial relationships with any organizations that might have an interest in the present paper and no other relationships or activities that could appear to have influenced the reported study.

Ethical approval

The study was performed in line with the principles of the 1964 Helsinki Declaration and its later amendments. Institutional Review Board approval was obtained for the study protocol (Ethical Committee from City of Health and Science from our city).

Informed consent

all the women gave their written informed consent to participate in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Monaco, M., Castiglioni, C., Bardesono, F. et al. Femoral bone mineral density at the time of hip fracture is higher in women with versus without type 2 diabetes mellitus: a cross-sectional study. J Endocrinol Invest 47, 59–66 (2024). https://doi.org/10.1007/s40618-023-02122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02122-3

Keywords

Navigation