Skip to main content
Log in

Effect of age on cardiac norepinephrine release in the female rat

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

We previously demonstrated an age-related decline in K+- induced norepinephrine (NE) release from cardiac synaptosomes prepared from 6- and 24- month- old male F344 rats. The purpose of the present study was to determine if the age- related decrease in NE release seen in male F344 rats is also present in female F344 rats. K+- induced NE release was assessed in cardiac synaptosomes prepared from 6-, 12-, 18-, and 24- month- old male and female F344 rats. NE release was significantly greater in young male rats, compared to old male rats. However, no age- related decrease in NE release was observed in the female rats. In contrast to previous observations in male rats, raising extracellular [Mg2+], an inorganic Ca2+ channel blocker, reduced NE release to the same extent in all female ages. Omega- conotoxin, an organic Ca2+ channel blocker, also decreased NE release to the same extent in all female ages. These studies suggest that in contrast to aging male rats, cardiac adrenergic nerve terminals of aging female rats maintain their capacity to release NE. (Aging Clin. Exp. Res. 7: 210–217, 1995)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aloyo V.J., McIlvain H.B., Bhavsar V.H., Roberts J.: Characterization of norepinephrine accumulation by a crude synaptosomal-mitochondrial fraction isolated from rat heart. Life Sci. 48: 1317–1324, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Snyder D.L., Aloyo V.J., McIlvain B., Johnson M.D., Roberts J.: Effect of potassium- and tyramine-induced release of norepinephrine from cardiac synaptosomes in male F344 rats. J. Gerontol. 47: B190–B197, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Whittaker V.P.: The synaptosome. In: Lajtha A. (Ed.), Handbook of Neurochemistry. Plenum Press New York, 1984, Vol. 7, pp. 1–39.

    Google Scholar 

  4. de Belleroche J.S., Bradford H.F.: The stimulus-induced release of acetylcholine from synaptosome beds and its calcium dependence. J. Neurochem. 19: 1817–1819, 1972.

    Article  PubMed  Google Scholar 

  5. Verhage M., Besselsen E., Loper da Silva F.H., Ghijsen W.E.J.M.: Ca2+-dependent regulation of presynaptic stimulussecretion coupling. J. Neurochem. 53: 1188–1194, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. McCleskey E.W., Fox A.P., Feldman D.H., Cruz L.J., Olivera B.M., Tsien R.W., Toshikami D.: ω-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. USA 84: 4327–4331, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Witcher D.R., De Waard M., Sakamoto J., Franzini-Armstrong C., Pragnell M., Kahl S.D., Campbell K.P.: Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science 261: 486–489, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Roberts J., Snyder D.L., Aloyo V.J., Johnson M.D.: Decrease in norepinephrine (NE) release with age from cardiac adrenergic nerve terminals: role of calcium. Gerontohgist 32: (Special Issue II): 154, 1992 (abstract).

    Google Scholar 

  9. Daly R.N., Goldberg P.B., Roberts J.: Effects of age on neurotransmission at the cardiac sympathetic neuroeffector junction. J. Pharmacol. Exp. Ther. 245: 798–803, 1988.

    PubMed  CAS  Google Scholar 

  10. Roberts J., Mortimer M.L., Ryan P.J., Johnson M.D., Turner N.: Role of calcium in adrenergic neurochemical transmission in the aging heart. J. Pharmacol. Exp. Ther. 253: 957–964, 1990.

    PubMed  CAS  Google Scholar 

  11. Tumer N., Ryan P.J., Roberts J.: Action of potassium on neurochemical transmission at the cardiac adrenergic neuroeffector junction with aging. Mech. Ageing Dev. 52: 87–91, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Tumer N., Mortimer M.L., Roberts J.: Gender differences in the effect of age on adrenergic neurotransmission in the heart. Exp. Gerontol. 27: 301–307, 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Bradford M.M.: A rapid and sensitive method for the quantitation of microform quantities of protein utilizing a principle of protein-dye binding. Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Winer B.J.: Statistical Principals in Experimental Design. McGraw-Hill, New York, 1971.

    Google Scholar 

  15. Tallarida R.J., Murry R.B.: Manual of Pharmacologie Calculations with Computer Programs. Springer-Verlag, New York, 1986.

    Book  Google Scholar 

  16. Reimann W., Kollhofer U.: Voltage-sensitive Ca2+ channels in rat brain neocortical noradrenergic nerve terminals. Pharmacology 36: 249–257, 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Hirning L.D., Fox A.P., McCleskey E.W., Olivera B.M., Thayer S.A., Miller R.J., Tsien R.W.: Dominant role of N-type Ca2+ channels in evoked release of norepinephrine form sympathetic neurons. Science 239: 57–61, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Tsien R.W., Lipscombe D., Madison D.V., Bley K.R., Fox A.P.: Multiple types of neuronal calcium channels and their selective modulation. TINS 11: 431–438, 1988.

    PubMed  CAS  Google Scholar 

  19. Hofmann F., Habermann E.: Role of ω-conotoxin-sensitive calcium channels in inositolphosphate production and noradrenaline release due to potassium depolarization or stimulation with carbachol. Nauyn-Schmiedeberg’s Arch. Pharmacol. 341: 200–205, 1990.

    CAS  Google Scholar 

  20. Suszkiw J.B., Murawsky M.M., Former R.C.: Heterogeneity of presynaptic calcium channels revealed by species differences in the sensitivity of synaptosomal 45Ca entry to ω-conotoxin. Biochem. Biophys. Res. Commun. 145: 1283–1286, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Gary W.R., Olivera B.M., Cruz L.J.: Peptide toxins from venomous conus snails. Ann. Rev. Biochem. 57: 665–700, 1988.

    Article  Google Scholar 

  22. Glossman H., Striessnig J.: Molecular properties of calcium channels. Rev. Physiol. Biochem. Pharmacol. 114: 1–105, 1990.

    Article  Google Scholar 

  23. Sihra T.S., Nichols R.A.: Mechanisms in the regulation of neurotransmitter release from brain nerve terminals: current hypotheses. Neurochem. Res. 18: 47–58, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. World Health Organization: World Health Statistics Annual: Vital Statistics and Causes of Death. World Health Organization, Geneva, 1986.

    Google Scholar 

  25. Eaker E.D., Packard B., Thom T.J.: Epidemiology and risk factors for coronary heart disease in women. Cardiovasc. Clin. 19: 129–145, 1989.

    PubMed  CAS  Google Scholar 

  26. Kannel W.B., Hgortland M.C., McNamara P.M.: Menopause and risk of cardiovascular disease: the Framingham study. Ann. Intern. Med. 85: 447–452, 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Stampfer M.J., Coldiz G.A., Willett W.C., Manson J.E., Rosner B., Speizer F.E., Hennekens C.H.: Postmenopausal estrogen therapy and cardiovascular disease. N. Engl. J. Med. 325: 756–762, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Nabulsi A.A., Folsom A.R., White A., Patsch W., Heiss G., Wu K.K., Szklo M.: Association of hormone-replacement therapy with various cardiovascular risk factors in postmenopausal women. N. Engl. J. Med. 328: 1069–1074, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Eysmann S.B., Douglas P.S.: Reperfusion and revascularization strategies for coronary artery disease in women. JAMA 268: 1903–1907, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Barrett-Connor E., Bush T.L.: Estrogen and coronary heart disease in women. JAMA 265: 1861–1867, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Claustre J., Peyrin L., Fitoussi R., Mornex R.: Sex differences in the adrenergic response to hypoglycemic stress in humans. Psychopharm. 67: 147–153, 1980.

    Article  CAS  Google Scholar 

  32. Storm D., Metzger B., Thrien B.: Effects of age on autonomic cardiovascular responsiveness in healthy men and women. Nursing Res. 38: 326–330, 1989.

    Article  CAS  Google Scholar 

  33. Fan T.M., Banerjee S.P.: Age-related reduction of beta-adrenoceptor sensitivity in rat heart occurs by multiple mechanisms. Gerontology 31: 373–380, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Dakai M., Danziger R.S., Staddon J.M., Lakatta E.G., Hansford R.G.: Decrease with senescence in the norepinephrine-induced phosphorylation of myofilament proteins in isolated rat cardiac myocytes. J. Mol. Cell. Cardiol. 21: 1327–1336, 1989.

    Article  Google Scholar 

  35. O’Connor S.W., Scarpace P.J., Abrass I.B.: Age-associated decrease of adenylate cyclase activity in rat myocardium. Mech. Ageing Dev. 16: 91–95, 1981.

    Article  PubMed  Google Scholar 

  36. Scarpace P.J., Abrass I.B.: Beta-adrenergic agonist-mediated desensitization in senescent rats. Mech. Ageing Dev. 35: 255–264, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, D.L., Johnson, M.D., Eskin, B.A. et al. Effect of age on cardiac norepinephrine release in the female rat. Aging Clin Exp Res 7, 210–217 (1995). https://doi.org/10.1007/BF03324337

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324337

Keywords

Navigation