Skip to main content
Log in

Transmural differences of lipofuscin pigment accumulation in the left ventricle of rat heart during growth and aging1

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

In view of the higher metabolic rate in subendocardial heart tissue, the rate of age-related lipofuscin pigment accumulation was explored in different regions of the left ventricle heart wall of Sprague-Dawley rats. Hearts were removed from 2-, 6-, 12- and 24-month-old rats, and lipofuscin pigment accumulation was assessed in the subepicardial and subendocardial layers, either by measuring extractable fluorescent material, or by direct visualization with fluorescence microscopy. Findings showed that the amount of extractable fluorescent material and the number, size and brightness of the fluorescent lipofuscin granules increased with age in all the myocardial tissue layers. The rate of accumulation of extractable fluorescent material was higher in subendocardial compared to subepicardial tissue. At the microscope, fluorescent granules exhibited a different morphological appearance in the subendocardial and subepicardial tissue of the two older age-groups. These data support the hypothesis that liposoluble age-pigment deposition is linked to the rate of local oxidative metabolism. (Aging 3: 19-23, 1991)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sohal R.S., Wolfe L.S.: Lipofuscin: characteristics and significance. Progr. Brain Res. 70: 171–183, 1986.

    Article  CAS  Google Scholar 

  2. Tomanek R.J., Karlsson U.L.: Myocardial ultrastructure of young and senescent rats. J. Ultrastruct Res. 42: 201–220, 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Csallany A.S., Ayaz K.L.: Quantitative determination of organic solvent soluble lipofuscin pigments in tissues. Lipids 11: 412–417, 1976.

    Article  PubMed  CAS  Google Scholar 

  4. Travis D.F., Travis A.: Ultrastructural changes in the left ventricular rat myocardial cell with age. J. Ultrastruct. Res. 39: 124–148, 1972.

    Article  PubMed  CAS  Google Scholar 

  5. Feldman M.L., Navaratnam V.: Ultrastructural changes in atrial myocardium of the aging rat. J. Anat 133: 7–17, 1981.

    PubMed  CAS  Google Scholar 

  6. Malkoff D.B., Strehler B.L.: The ultrastructure of isolated and in situ human cardiac age-pigment. J. Cell Bol. 16:611–616, 1963.

    Article  CAS  Google Scholar 

  7. Skepper J.N.,. Navaratnam V.: Lipofuscin formation in the myocardium of juvenile golden hamster: an ultrastructural study including staining for acid phosphatase. J. Anat. 150: 155–167, 1987.

    PubMed  CAS  Google Scholar 

  8. Shimasaki H., Nozawa T., Privett O.S., Anderson W.R.: Detection of age-related fluorescent substances in rat tissues. Arch. Biochem. Biophys. 183: 443–451, 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Friede R.L.: The relation of the formation of lipofuscin to the distribution of oxidative enzymes in the human brain. Acta Neuropathol 2: 113–125, 1962.

    Article  CAS  Google Scholar 

  10. Tappel A.L.: Lipid peroxidation damage to cell components. Fed. Proc. 32: 1870–1874, 1973.

    PubMed  CAS  Google Scholar 

  11. Hansford R.G.: Bioenergetics in aging. Biochim. Biophys. Acta 726: 41–80, 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Sohal R.S., Marzabadi M.R., Galaris D., Brunk U.T.: Effect of ambient oxygen concentration on lipofuscin accumulation in cultured rat heart myocytes. A novel in vitro model of lipofuscinogenesis. Free Radic. Biol. Med. 6: 23–30, 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Marzabadi M.R., Sohal R.S., Brunk U.T.: Effect of ferric iron and desferrioxamine on lipofuscin accumulation in cultured rat heart myocytes. Mech. Ageing Dev. 46: 145–157, 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Tappel A.L.: Lipid peroxidation and fluorescent molecular damage to membranes. In: Trump B.F., Arstila A.V. (Eds.), Pathobiology of cell membranes. Academic Press, New York, 1975, pp. 145–170.

    Google Scholar 

  15. Miquel J., Oro J., Bensch I., Johnson J.: Lipofuscin: fine structural and biochemical studies. In: Pryor W.A. (Ed.), Free Radicals in Biology. Academic Press, New York, 1977, pp. 133–182.

    Google Scholar 

  16. Gutteridge J.M.C.: Damage to biological molecules by iron and copper complexes. In: Zs-Nagy I. (Ed.), Lipofuscin-1987; State of the art. Akademiai Kiado, Budapest and Elsevier, Amsterdam, 1988, pp. 69–82.

    Google Scholar 

  17. Thaw H.H., Brunk U.T., Collins P.V.: Influence of oxygen tension, pro-oxidants and antioxidants on the formation of lipid peroxidation products (lipofuscin) in individual cultivated human glial cells. Mech. Ageing Dev. 24: 211–223, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Nohl H., Hegner D.: Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82: 563–567, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Armour J.A., Randall W.C.: Canine left intramyocardial pressures. Am. J. Physiol 220: 1833–1839, 1971.

    PubMed  CAS  Google Scholar 

  20. Stein P.D., Marzilli M, Sabbah H.N., Lee T.: Systolic and diastolic pressure gradients within the left ventricular wall. Am. J. Physiol 238: H625–H630,1980.

    PubMed  CAS  Google Scholar 

  21. Kirk E.S., Honig C.R.: Non uniform distribution of blood flow and gradients of oxygen tension within the heart. Am. J. Physiol. 207: 661–668, 1964.

    PubMed  CAS  Google Scholar 

  22. Schultheiss H.P., Bispink G., Neuholff V., Boite H.D.: Myocardial lactate dehydrogenase isoenzyme distribution in the normal heart. Basic Res. Cardiol. 76: 681–689, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. De Tata V., Bergamini C., Gori Z., Locci-Cubeddu T., Bergamini E.: Transmural gradient of glycogen metabolism in the normal rat left ventricle. Pflugers Arch. 396: 60–65, 1983.

    Article  PubMed  Google Scholar 

  24. Katz M.L., Robinson W.G., Herrmann R.K., Groome A.B., Bieri J.G.: Lipofuscin accumulation resulting from senescence and vitamin E deficiency: spectral properties and tissue distribution. Mech. Ageing Dev. 25: 149–159, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Weibel E.R.: Stereological principles for morphometry in electron microscopic cytology. Int. Rev. Cytol 26: 235–302, 1969.

    Article  PubMed  CAS  Google Scholar 

  26. Van der Vusse G.J., Arts T., Glatz J.F.C., Reneman R.S: Transmural differences in energy metabolism of the left ventricular myocardium: fact or fiction. J. Mol. Cell. Cardiol 22: 23–37, 1990.

    PubMed  Google Scholar 

  27. Lyman C.P., O’Brien R.C., Green G.C.: Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212: 668–670, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Papafrangas E.D., Lyman C.P.: Lipofuscin accumulation and hibernation in the Turkish hamster Mesocricetus brandti J. Gerontol. 37: 417–421, 1982.

    Article  Google Scholar 

  29. Sohal R.S.: Relationship between metabolic rate, lipofuscin accumulation and lysosomal enzyme activity during aging in the adult housefly, Musca domestica. Exp. Gerontol 16: 347–355, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Sohal R.S., Donato H.: Effects of experimentally altered life spans on the accumulation of fluorescent age-pigment in the housefly, Musca domestica. Exp. Gerontol 13: 335–341, 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Munnel J., Getty R.: Rate of accumulation of cardiac lipofuscin in the aging canine. J. Gerontol. 23: 154–158, 1968.

    Article  Google Scholar 

  32. Scholtz C.L., Brown A.: Lipofuscin and transsynaptic degeneration. Virchows Arch. 381: 35–40, 1978.

    CAS  Google Scholar 

  33. Brizze K.R., Ordy J.M., Kaack B.: Early appearance of regional and extraneuronal lipofuscin accumulation with age in the brain of non human primate (Macaca mulatta). J. Gerontol. 29: 366–381, 1974.

    Article  Google Scholar 

  34. Nandy K.: Properties of neuronal lipofuscin pigment in mice. Acta Neuropathol (Berlin) 19: 25–32, 1971.

    Article  CAS  Google Scholar 

  35. Fletcher B.L., Dillard J.C., Tappel A.L: Measurements of fluorescent lipid peroxidation products in biological system and tissues. Anal. Biochem. 52: 1–9, 1973.

    Article  PubMed  CAS  Google Scholar 

  36. Hendley D.D., Mildvan A.S., Reporter M.C., Strehler B.L.: The properties of isolated human age-pigments. I. Preparation and physical properties. J. Gerontol. 18: 144–149, 1963.

    Article  PubMed  CAS  Google Scholar 

  37. Shimasaki H., Ueta N., Privett O.S.: Covalent binding of peroxidised linoleic acid to proteins and amino acids as a model for lipofuscin formation. Lipids 17: 878–883, 1982.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Roso, A., De Tata, V., Gori, Z. et al. Transmural differences of lipofuscin pigment accumulation in the left ventricle of rat heart during growth and aging1. Aging Clin Exp Res 3, 19–23 (1991). https://doi.org/10.1007/BF03323968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323968

Keywords

Navigation