Skip to main content
Log in

On the Existence of Pulses in Reaction- Diffusion- Equations

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We apply the theory of invariant manifolds for singularly perturbed ordinary differential equations and results about the persistence of homoclinic orbits in autonomous differential systems with several parameters in order to establish the existence of pulses in reaction-diffusion systems. Essential assumptions for the existence of pulses are the following: (i) Existence of a homoclinic orbit to a hyperbolic equilibrium in the corresponding reaction system. (ii) The quotient of some measure for the diffusivities and the square of the puls speed is sufficiently small. (iii) Validity of some transversality condition. The last assumption requires the occurence of parameters in the reaction term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Britton, Reaction-Diffusion Equations and Their Applications to Biology, Academic Press, 1986.

  2. G.A. Carpenter, A geometrical approach to singular perturbation problems with applications to nerve impuls equations, J. Diff. Rqus. 23 (1977), 335–367.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Carsten, H. Cohen and P. Lagerstrom, Perturbation Analysis of an approximation to Hodgkin-Huxley theory, Quart. Appl. Math. 32 (1975), 365–402.

    Google Scholar 

  4. R. Churchill, Isolated invariant sets in compact metric spaces, J. Diff. Equs. 12 (1972), 330–352.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Conley, On travelling wave solutions of nonlinear diffusion equations, Lect. Notes Phys. 38 (1975), 498–510.

    Article  MathSciNet  Google Scholar 

  6. C. Conley and J. Smoller, Topological techniques in reaction-diffusion equations, Lect. Notes in Biomath. 38 (1980), 473–483.

    Article  MathSciNet  Google Scholar 

  7. C. Conley, Isolated invariant sets and the Morse index, Reg. Conf. Ser. Math. 38, AMS, Providence 1978.

  8. J. Cronin, Mathematical aspects of Hodgkin-Huxley neural theory, Cambridge University Press, 1987.

  9. R. Easton, Isolating blocks and symbolic dynamics, J. Diff. Equs. 17 (1975), 96–118.

    Article  MathSciNet  MATH  Google Scholar 

  10. P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath. 28, 1979.

  11. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445–466.

    Article  Google Scholar 

  12. J. Gruendler, Homoclinicsolutionsforautonomousdynamicalsystemsinarbitrarydimension. To appear in SIAM J. Math. Anal.

  13. J. Gruendler, The existence of homoclinic orbits and the method of Melnikov for systems in Rn, SIAM J. Math. Anal. 16 (1985), 907–931.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Guckenheimer and Ph. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag New York 1983.

    MATH  Google Scholar 

  15. P. Hastings, On the existence of homoclinic and periodic orbits for the FitzHugh-Nagumo-equations, Quart. J. Math. Oxford Ser. 2, 27 (1978), 123–134.

    Article  MathSciNet  Google Scholar 

  16. P. Hastings, On travelling wave solutions of the Hodgkin-Huxlcy equations, Arch. Rat. Mech. Anal. 60 (1976), 229–257.

    Article  MathSciNet  MATH  Google Scholar 

  17. A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), 500–544.

    Google Scholar 

  18. H. Ikeda, M. Mimura and T. Tsujikawa, Slow travelling wave solutions to the Hodgkin-Huxley equations, Lect. Notes Numer. Appl. Analysis 9 (1987), 1–73.

    MathSciNet  Google Scholar 

  19. H.W. Knobloch and F. Kappel,. Gewöhnliche Diferentialgleichungen, Teubner-Verlag, Stuttgart 1974.

    Book  Google Scholar 

  20. H.W. Knobloch and B. Aulbach, Singular perturbations and integral manifolds, J. Math. Phys. Sci. 18 (1984), 414–424.

    MathSciNet  Google Scholar 

  21. R.N. Miller and J. Rinzel, The dependence of impulse propagation speed on firing frequency, dispersion, for the Hodgkin-Huxley model, Biophys. J. 34 (1981), 227–259.

    Article  Google Scholar 

  22. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve atxon, Proc. IRE 50 (1964), 2061–2070.

    Article  Google Scholar 

  23. K. Nipp, Invariant manifolds of singularly perturbed ordinary differential equations. J. Appl. Math. Phys. 36 (1985), 309–320.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Nipp, An algorithmic approach for solving singularly perturbed initial value problems, Dynamics Reported 1 (1988), 173–263.

    Article  MathSciNet  Google Scholar 

  25. D. Noble, A modification of the Hodgkin-Huxley etquations applicable to Purkinje fibre action and pacemaker potentials, J. Physiol. 160 (1962), 317–352.

    Google Scholar 

  26. D. Noble, Application of Htodgkin-Huxley equations to excitable tissues, Physiol. Reviews 46 (1966), 1–50.

    Google Scholar 

  27. K.J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equs. 55 (1984), 225–256.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Purfürst, Existenz einer invarianten Mannigfaltigkeit für eine Klasse von Abbildungen mit einem kleinen Parameter, Math. Nachr. 98 (1980), 251–256.

    Article  MathSciNet  MATH  Google Scholar 

  29. M.I. Rabinovich and D.I. Trubetskov, Oscillations and Waves, Mathematics and Its Applications (Soviet Series), vol. 50, Kluwer Academic Publishers, Dordrecht 1989.

    Google Scholar 

  30. J. Rinzel and J. Keller, Traveling wave solutions of a nerve conduction equation, Biophys. J. 13 (1973), 1313–1337.

    Article  Google Scholar 

  31. K.R. Schneider, Hopf bifurcations and center manifolds, Coll. Math. Soc. J. Bolyai 30 (1979), 953–970.

    Google Scholar 

  32. K.R. Schneider, Singularly perturbed autonomous differential systems, In: Dynamical Systems and Environmental Models (Ed. H.G. Bothe et al.), 32–39, Academie-Verlag Berlin, 1987.

    Google Scholar 

  33. K.R. Schneider, Existence of wave trains in reaction-diffusion systems, Mathematical Research 23 (1985), 182–190.

    Google Scholar 

  34. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer Verlag, New York 1983.

    Book  MATH  Google Scholar 

  35. A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations, Dynamics Reported 2 (1989), 89–169.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor H. W. Knobloch on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, K.R. On the Existence of Pulses in Reaction- Diffusion- Equations. Results. Math. 21, 200–210 (1992). https://doi.org/10.1007/BF03323079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323079

1980 Mathematics Subject Classification (1985 Revision)

Keywords and phrases

Navigation