Skip to main content
Log in

Isospectrality for Spherical Space Forms

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Consider the set S(q, Γ) of isometry classes of q-dimensional spherical space forms whose fundamental groups are isomorphic to a fixed group Γ. We define a certain group \({\cal A}(q,\Gamma)\) of transformations on the finite set \({\cal S}(q,\Gamma)\), prove that any two elements in the same \({\cal A}(q,\Gamma)\)-orbit are strongly isospectral, and study some consequences. Then a number of the results are carried over to riemannian quotients of oriented real Grassmann manifolds.

Some of these results were first obtained by Ikeda, mostly for the special case (Γ cyclic) of lens spaces, and by Gilkey and Ikeda for the case where every Sylow subgroup of Γ is cyclic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bérard, Transplantation et isospectralité, I. Math. Ann. 292 (1992), 547–559.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Bérard, Transplantation et isospectralité, II. J. London Math. Soc. 48 (1993), 565–576.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bérard & H. Pesce, Construction des variétés isospectrales autour du théorème de T. Sunada. In: Progress in Inverse Spectral Geometry, ed. S. I. Andersson &; M. L. Lapidus, Trends in Mathematics series, Birkhäuser, 1997; 63–83.

    Chapter  Google Scholar 

  4. M. Berger, Le spectre des variétés riemanniennes. Rev. Roum. Math. Pure et Appl. 18 (1969), 915–931.

    Google Scholar 

  5. M. Berger, P. Gauduchon & E. Mazet, Le Spectre d’une Variété Riemannienne. Lecture Notes in Math 194, Springer-Verlag, 1971.

  6. W. Burnside, Theory of groups of Finite Order, Second Edition. Cambridge University Press, 1911; Dover Publications, 1955.

  7. R. S. Cahn& J. A. Wolf, Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one. Comm. Math. Helv. 51 (1976), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  8. É. Cartan, Sur la détermination d’un système orthogonal complet dans un espace de Riemann symétrique clos. Rendiconti Palermo 53 (1929), 217–252.

    Article  MATH  Google Scholar 

  9. D. De Turck & C. S. Gordon, Isospectral deformations II: trace formulas, metrics and potentials. Comm. Pure Appl. Math. 42 (1989), 1067–1095.

    Article  MathSciNet  Google Scholar 

  10. D. B. A. Epstein, Natural tensors on riemannian manifolds. J. Diff. Geom. 10 (1975), 631–645.

    MATH  Google Scholar 

  11. P. B. Gilkey, On spherical space forms with metacyclic fundamental group which are isospectral but not equivariant cobordant. Compositio Math. 56 (1985), 171–200.

    MathSciNet  MATH  Google Scholar 

  12. A. Ikeda, On the spectrum of a riemannian manifold of positive constant curvature. Osaka J. Math. 17 (1980), 75–93.

    MathSciNet  MATH  Google Scholar 

  13. A. Ikeda, On the spectrum of a riemannian manifold of positive constant curvature, II Osaka J. Math. 17 (1980), 691–702

    MathSciNet  MATH  Google Scholar 

  14. A. Ikeda, On lens spaces which are isospectral but not isometric, Ann. Sci. École Norm. Sup. 13 (1980), 305-315.

    Google Scholar 

  15. A. Ikeda, On spherical space forms which are isospectral but not isometric. J. Math. Soc. Japan 35 (1983), 437–444.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Ikeda, Riemannian manifolds p-isospectral but not (p + l)-isospectral. In: Geometry of Manifolds, Perspectives. Math. 8, Academic Press, 1989, 383-417.

  17. A. Ikeda, On space forms of real Grassmann manifolds which are isospectral but not isometric. Kodai Math. J. 20 (1997), 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Kemper, Computational invariant theory. In: The Curves Seminar at Queens’, Volume XII, Queen’s Papers Pure Appl. Math. 114 (1998), 5–22.

    MathSciNet  Google Scholar 

  19. Th. Molien, Über die Invarianten der linearen Substitutionsgruppen. Sitzungsberichte der preussischen Akademie der Wissenschaften, Deutsche Akademie der Wissenschaften zu Berlin, 1897, 1152-1156.

  20. H. Pesce, Répresentations de groupes et variétés isospectrales. Contemporary Math. 173 (1994), 231–240.

    Article  MathSciNet  Google Scholar 

  21. H. Pesce, Répresentations relativement équivalentes et variétés riemanniennes isopectrales. Comment. Math. Helv. 71 (1996), 243–268.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Pesce, Une réciproque générique du théorème de Sunada. Comp. Math. 109 (1997), 357–365.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Pesce, Quelques applications de la théorie des représentations en géométrie spectrale. Rendiconti Math. 18 (1998), 1–63.

    MathSciNet  MATH  Google Scholar 

  24. P. Stredder, Natural differential operators on riemannian manifolds and representations of the orthogonal and special orthogonal groups, J. Diff. Geom. 10 (1975), 647–660.

    MathSciNet  MATH  Google Scholar 

  25. T. Sunada, Riemannian coverings and isospectral manifolds. Ann. Math. 121 (1985), 169–186.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Tanno, Eigenvalues of the Laplacian of a riemannian manifold. Tôhoku Math. J. 25 (1973), 391–403.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. A. Wolf, Sur la classification des variétés riemanniennes homogènes à courbure constante. C. r. Acad. Sci Paris 250 (1960), 3443–3445.

    MathSciNet  MATH  Google Scholar 

  28. J. A. Wolf, Vincent’s conjecture on Clifford translations of the sphere. Comment. Math. Helv. 36 (1961), 33–41.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. A. Wolf, Locally symmetric homogeneous spaces. Comment. Math. Helv. 37 (1962), 65–101.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. A. Wolf, Space forms of Grassmann manifolds. Canadian J. Math. 15 (1963), 193–205.

    Article  MATH  Google Scholar 

  31. J. A. Wolf, Spaces of Constant Curvature. First Edition, McGraw-Hill, 1967; Fifth Edition, Publish or Perish, 1984.

  32. J. A. Wolf, Riemannian quotients of Grassmann manifolds. In preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Wolf.

Additional information

To my teacher, S.-S. Chern, on his 90th birthday

Research partially supported by NSF Grant DMS 99-88643.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, J.A. Isospectrality for Spherical Space Forms. Results. Math. 40, 321–338 (2001). https://doi.org/10.1007/BF03322715

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322715

2000 AMS Subject Classification

Key Words

Navigation