Skip to main content
Log in

The second variational formula for Willmore submanifolds in Sn

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In [17] the third author presented Moebius geometry for sub-manifolds in Sn and calculated the first variational formula of the Willmore functional by using Moebius invariants. In this paper we present the second variational formula for Willmore submanifolds. As an application of these variational formulas we give the standard examples of Willmore hypersurfaces \( \lbrace W_{k}^{m}:= S^{k}(\sqrt {(m-k)/m}) \times S^{m-k}(\sqrt {k/m}), 1 \leq k \leq m-1 \rbrace \) in Sm+1 (which can be obtained by exchanging radii in the Clifford tori \( S^{k}(\sqrt {k/m}) \times S^{m-k}(\sqrt {(m-k)/m)})\) and show that they are stable Willmore hypersurfaces. In case of surfaces in S3, the stability of the Clifford torus \( S^{1}{({1\over \sqrt {2}})}\times S^{1}{({1\over \sqrt {2}})} \) was proved by J. L. Weiner in [18]. We give also some examples of m-dimensional Willmore submanifolds in an n-dimensional unit sphere Sn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke, W.:Vorlesungen uber Differentialgeometrie. Vol.3, Springer, Berlin, 1929.

  2. Bryant, R.: A duality theorem for Willmore surfaces, J. Differential Geom. 20(1984), 23–53.

    MathSciNet  MATH  Google Scholar 

  3. Chen, B.Y.: Some conformai invariants of submanifolds and their applications. Bol. Un. Math. Ital. (4)10 (1974), 380–385.

    MATH  Google Scholar 

  4. Cheng, S.Y. and Yau, S.-T.: Eypersurfaces with constant scalar curvature, Math. Ann. 225(1977), 195–204.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kobayashi, O.: A Willmore type problem for S2 × S2, Differential geometry and differential equations (Shanghai, 1985), 67–72, Lecture Notes in Math., 1255, Springer, Berlin, 1987.

    Google Scholar 

  6. Li, H., Willmore hypersurfaces in a sphere, To appear in Asian J. of Math., 5(2001).

  7. Li, H., Global rigidity theorems of hypersurfaces, Ark. Mat. 35(1997), 327–351.

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, H., Wang, C. and Wu, F., A Moebius characterization of Veronese surfaces in Sn, Math. Ann. 319(2001), 707–714.

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, P. and Yau, S.-T.: A new conformai invariant and its application to Willmore conjecture and the first eigenvalue of compact surface, Invent. Math. 69(1982), 269–291.

    Article  MathSciNet  MATH  Google Scholar 

  10. Palmer, B.: The conformai Gauss map and the stability of Willmore surfaces, Ann. Global Anal. Geom. Vol. 9, No. 3 (1991), 305–317.

    Article  MathSciNet  MATH  Google Scholar 

  11. Palmer, B.: Second variational formulas for Willmore surfaces, The problem of Plateau, 221–228, World Sci. Publishing, River Edge, NJ, 1992.

    Chapter  Google Scholar 

  12. Peterson, M.A.: Geometrical methods for the elasticity theory of membranes, J. Math. Physics, 26(4), 1985, 711–717.

    Article  MATH  Google Scholar 

  13. Pinkall, U.: Hopf tori in S3, Invent. Math. 81(1985), 379–386.

    Article  MathSciNet  MATH  Google Scholar 

  14. Pinkall, U.: Inequalities of Willmore type for submanifolds, Math. Z. 193 (1986), 241–246.

    Article  MathSciNet  MATH  Google Scholar 

  15. Simon, L: Existence of surfaces minimizing the Willmore energy, Comm. Analysis Geometry, vol. 1, n.2 (1993), 281–326.

    MATH  Google Scholar 

  16. Wallach, N.R.: Minimal immersions of symmetric spaces into spheres, “Symmetric Space”, Ed. Boothby and Weiss, Dekker, New York, 1972, 1-40.

  17. Wang, C.P.: Moebius geometry of submanifolds in Sn, Manuscripta Math. 96(1998), 517–534.

    Article  MathSciNet  MATH  Google Scholar 

  18. Weiner, J.L.: On a problem of Chen, Willmore, et al, Indiana University Journal, 27(1978), 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  19. Willmore, T.J.: Total curvature in Riemannian geometry. Ellis Horwood Limitd, 1982.

  20. Willmore, T.J.: Note on embedded surfaces, An. Sti. Univ. “Al. I. Cuza” Iasi Sect. I a Mat., 11(1965), 493–496.

    MathSciNet  Google Scholar 

  21. Willmore, T.J.: Mean curvature of Riemannian immersions, J. London Math. Soc, 3(1971), 307–310.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Guo.

Additional information

Dedicated to Professor S. S. Chern at the occasion of his 90th birthday

The second author is partially supported by the Alexander von Humboldt Research Fellowship and the US-China Cooperative Research NSF Grant INT-9906856 and the third author is partially supported by 973-project, DFG466-CHV-II3/127/0, Qiushi Award and RFDP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Wang, C. & Li, H. The second variational formula for Willmore submanifolds in Sn . Results. Math. 40, 205–225 (2001). https://doi.org/10.1007/BF03322706

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322706

Keywords

2000 MR Subject Classification

Navigation