Skip to main content
Log in

Lie Sphere Geometry in Hubert Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We develop Lie sphere geometry for arbitrary real pre-Hilbert spaces of (finite or infinite) dimension at least 2. One of the main results is that a bijection of the set of all Laguerre cycles which preserves contact in one direction must already be a Lie transformation (THEOREM 2). As a first consequence of this theorem we get that a bijection of an arbitrary real pre-Hilbert space of dimension at least 3 which preserves Lorentz-Minkowski distance 0 in one direction must already be a (proper or improper) Lorentz boost up to a dilatation, a translation and an orthogonal mapping (THEOREM 3). This is a generalization of results of A.D. Alexandroff [1], E.M. Schröder [21] and F. Cacciafesta [7]. Another consequence is that a bijection of the set of all Lie cycles which preserves contact in one direction must already be a Lie transformation (THEOREM 4). If we apply this result to the finite dimensional case, we get that the diffeomorphism assumption in the Fundamental Theorem of Lie sphere geometry as stated in Theorem 1.5 in T.E. Cecil [8], p. 33, is not needed for the proof of this theorem (REMARK to THEOREM 4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A.D.: Seminar Report. Uspehi Mat. Nauk. 5 (1950), no. 3 (37), 187

    Google Scholar 

  2. Benz, W.: Vorlesungen über Geometrie der Algebren. Die Grundlehren der math. Wissensch. in Einzeldarstellungen, Bd. 197, Springer-Verlag, Berlin, New York, 1973

    Google Scholar 

  3. Benz, W: Geometrische Transformationen. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1992.

    MATH  Google Scholar 

  4. Benz, W: Lorentz-Minkowski distances in Hilbert spaces. Geom. Dedicata 81 (2000) 219–230

    Article  MathSciNet  MATH  Google Scholar 

  5. Benz, W: Real Geometries. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1994.

    MATH  Google Scholar 

  6. Blaschke, W: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. III. Differentialgeometrie der Kreise und Kugeln. Bearbeitet von G. Thomsen. Grundlehren der math. Wissensch. in Einzeldarstellungen, Bd. 29, Springer-Verlag, Berlin, 1929

    Google Scholar 

  7. Cacciafesta, F.: An observation about a theorem of A.D. Alexandrov concerning Lorentz transformations. Journ. Geom. 18 (1982) 5–8

    Article  MathSciNet  MATH  Google Scholar 

  8. Cecil, T.E.: Lie sphere geometry. Springer-Verlag, New York, Berlin, 1992

    Book  MATH  Google Scholar 

  9. Cecil, T.E. and Chern, S.S.: Tautness and Lie sphere geometry. Math. Ann. 278 (1987) 381–399

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y.: Zur Axiomatik der ebenen Geometrie von Lie über einem Körper. Dissertation Bochum, 1967

  11. Dubikajtis, L.: La géométrie de Lie. Rozprawy Mat. 15 (1958)

  12. Höfer, R.: On the geometry of hyperbolic cycles. Aequat. Math. 56 (1998) 169–180

    Article  MATH  Google Scholar 

  13. Höfer, R.: Cycles in de Sitter’s world. Result. Math. 36 (1999) 57–68

    Article  MATH  Google Scholar 

  14. Huang, W.: Adjacency preserving mappings of invariant subspaces of a null system. To appear Proc. Am. Math. Soc.

  15. Klein, F.: Vorlesungen über Höhere Geometrie. 3. Aufl. Bearbeitet und herausgegeben von W. Blaschke. Grundlehren der math. Wissensch. in Einzeldarstellungen, Bd. 22, Springer-Verlag, Berlin, 1926 (Nachdruck 1968)

    Google Scholar 

  16. Leissner, W.: Büschelhomogene Lie-Ebenen. Journ. reine angew. Math. 246 (1971) 76–116

    MathSciNet  MATH  Google Scholar 

  17. Lie, S.: Über Komplexe, insbesondere Linien- und Kugelkomplexe, mit Anwendung auf die Theorie partieller Differentialgleichungen. Math. Ann. 5 (1872) 145–256

    Article  MathSciNet  Google Scholar 

  18. Lie, S. and Scheffers, G.: Geometrie der Berührungstransformationen. I. B.G. Teubner-Verlag, Leipzig, 1896

    MATH  Google Scholar 

  19. Müller, E. and Krames, J.L.: Die Zyklographie. Leipzig, Wien, 1929

  20. Pinkall, U.: Dupin hypersurfaces. Math. Ann. 270 (1985) 427–440

    Article  MathSciNet  MATH  Google Scholar 

  21. Schröder, E.M.: Zur Kennzeichnung distanztreuer Abbildungen in nichteuklidischen Räumen. Journ. Geom. 15 (1980) 108–118

    Article  MATH  Google Scholar 

  22. Study, E.: Vereinfachte Begründung von Lies Kugelgeometrie. I. Sitzungsber. der preuss. Akad. der Wissensch. 27 (1926) 360–380

    Google Scholar 

  23. Takasu, T.: Differentialgeometrien in den Kugelräumen. II. Maruzen, Tokyo, 1939

    MATH  Google Scholar 

  24. Takasu, T.: Parabolic Lie-Geometry. Yokohama Math. J. 4 (1956) 95–98

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to S.S. Chern on the occasion of his 90th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benz, W. Lie Sphere Geometry in Hubert Spaces. Results. Math. 40, 9–36 (2001). https://doi.org/10.1007/BF03322699

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322699

Keywords

Navigation