Skip to main content
Log in

The Relativistic Noncommutative Nonassociative Group of Velocities and the Thomas Rotation

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The bizarre and counterintuitive noncommutativity and nonassociativity of the relativistic composition of nonparallel admissible velocities is sometimes interpreted as a peculiarity of special theory of relativity. It is related to the fact that Lorentz acceleration transformations in three space dimensions do not form a group due to the presence of the so called Thomas rotation. The Thomas rotation turns out to be the effect that provides a means to the presentation of the set of relativistically admissible velocities as an interesting noncommutative, nonassociative group with a group operation given by the relativistic velocity composition. Interestingly, the algebraic structure induced by the Thomas rotation is not an isolated result in special relativity. It was earlier discovered by Karzel, and studied by Kerby and by Wefelscheid in a totally different context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Baylis and G. Jones, Special relativity with Clifford algebras and 2×2 matrices, and the exact product of two boosts, J. Math. Phys. 29,57–62 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ben-Menahem, Wigner’s rotation revisited, Amer. J. Phys. 53, 62–66 (1985).

    Article  MathSciNet  Google Scholar 

  3. V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Quantum Electrodynamics (trans. J.B. Sykes and J.S. Bell), p. 126. Pergamon Press, New York (1982).

    Google Scholar 

  4. J.T. Cushing, Vector Lorentz transformations, Amer. J. Phys. 35, 858–862 (1967).

    Article  Google Scholar 

  5. J.P. Fillmore, A note on rotation matrices, IEEE Comp. Graph. 4, 30–33 (1984).

    Article  Google Scholar 

  6. G.P. Fisher, The Thomas precession, Amer. J. Phys. 40, 1772–1785 (1972).

    Article  Google Scholar 

  7. H. Goldstein, Classical Mechanics, pp. 285–286, 2nd ed., Addison-Wesley, Menlo-Park, California (1980).

    MATH  Google Scholar 

  8. H. Karzel, Inzidenzgruppen I, lecture notes by I. Pieper and K. Sörensen, Univ. Hamburg (1965),123-135.

  9. W. Kerby and H. Wefelscheid, The maximal sub near-field of a near domain, J. Algebra, 28, (1974), 319–325.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Mathews, Coordinate free rotation formalism, Amer. J. Phys. 44 1210 (1976).

    Google Scholar 

  11. N.D. Mermin, Private communication.

  12. M.W. Standberg, Special relativity completed: the source of some 2s in the magnitude of physical phenomena, Amer. J. Phys. 54, 321–331 (1986).

    Article  MathSciNet  Google Scholar 

  13. L.H. Thomas, The motion of the spinning electron, Nature 117,514 (1926).

    Google Scholar 

  14. L.H. Thomas, The kinematics of an electron with an axis, Philos. Mag. S. 7, 1–23 (1927).

    Google Scholar 

  15. L.H. Thomas, Recollections of the discovery of the Thomas processional frequency, AIP Conf. Proc. No. 95, High Energy Spin Physics (Brookhaven National Lab, ed. G.M. Bunce) pp. 4–12 (1982).

  16. G.E. Uhlenbeck, Fifty years of spin: personal reminiscences, Phys. Today, 29,43–48 (June, 1976).

    Article  Google Scholar 

  17. A. A. Ungar, Thomas rotation and the parametrization of the Lorentz transformation group, Found. Phys. Lett. 1, 57–89 (1988).

    MathSciNet  Google Scholar 

  18. H. Wähling, Theorie der Fastkörper, Thales Verlag, W. Germany, 1987.

    MATH  Google Scholar 

  19. H. Wefelscheid, ZT-Subgroups of sharply 3-transitive groups, Proc. Edinburgh Math. Soc, 23 (1980), 9–14.

    Article  MathSciNet  MATH  Google Scholar 

  20. C.B. van Wyk, Lorentz transformations in terms of initial and final vectors, J. Math. Phys. 27 1311–1314 (1986).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungar, A.A. The Relativistic Noncommutative Nonassociative Group of Velocities and the Thomas Rotation. Results. Math. 16, 168–179 (1989). https://doi.org/10.1007/BF03322653

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322653

Keywords

Navigation