Skip to main content
Log in

Simulating nonholonomic dynamics

  • Sesiones Especiales
  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This paper develops different discretization schemes for nonholonomic mechanical systems through a discrete geometric approach. The proposed methods are designed to account for the special geometric structure of the nonholonomic motion. Two different families of nonholonomic integrators are developed and examined numerically: the geometric nonholonomic integrator (GNI) and the reduced d’Alembert-Pontryagin integrator (RDP). As a result, the paper provides a general tool for engineering applications, i.e. for automatic derivation of numerically accurate and stable dynamics integration schemes applicable to a variety of robotic vehicle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anthony M. Bloch. Nonholonomic mechanics and control, volume 24 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York, 2003.

    Google Scholar 

  2. Anthony M. Bloch, P. S. Krishnaprasad, Jerrold E. Marsden, and Richard M. Murray. Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal., 136(1):21–99, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  3. Nawaf Bou-Rabee and Jerrold E. Marsden. Hamilton-Pontryagin integrators on Lie groups. I. Introduction and structure-preserving properties. Found. Comput. Math., 9(2): 197–219, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  4. Francesco Bullo and Andrew D. Lewis. Geometric control of mechanical systems, volume 49 of Texts in Applied Mathematics. Springer-Verlag, New York, 2005. Modeling, analysis, and design for simple mechanical control systems.

    Google Scholar 

  5. Frans Cantrijn, Jorge Cortés, Manuel de León, and David Martín de Diego. On the geometry of generalized Chaplygin systems. Math. Proc. Cambridge Philos. Soc., 132(2):323–351, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  6. Elena Celledoni and Brynjulf Owren. Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Engrg., 192(3–4):421–438, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hernán Cendra, Jerrold E. Marsden, and Tudor S. Ratiu. Geometric mechanics, Lagrangian reduction, and nonholonomic systems. In Mathematics unlimited—2001 and beyond, pages 221–273. Springer, Berlin, 2001.

    Google Scholar 

  8. Jorge Cortés and Sonia Martínez. Non-holonomic integrators. Nonlinearity, 14(5):1365–1392, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jorge Cortés Monforte. Geometric, control and numerical aspects of nonholonomic systems, volume 1793 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.

    Google Scholar 

  10. Yuri N. Fedorov and Dmitry V. Zenkov. Discrete nonholonomic LL systems on Lie groups. Nonlinearity, 18(5):2211–2241, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Ferraro, D. Iglesias, and D. Martín de Diego. Numerical and geometric aspects of the nonholonomic shake and rattle methods. In AIMS Proceedings. (To appear).

  12. S. Ferraro, D. Iglesias, and D. Martín de Diego. Momentum and energy preserving integrators for nonholonomic dynamics. Nonlinearity, 21(8):1911–1928, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2002.

    Google Scholar 

  14. David Iglesias, Juan C. Marrero, David Martín de Diego, and Eduardo Martínez. Discrete nonholonomic Lagrangian systems on Lie groupoids. J. Nonlinear Sci., 18(3):221–276, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  15. David Iglesias-Ponte, Manuel de León, and David Martín de Diego. Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems. J. Phys. A, 41(1):015205, 14, 2008.

    Article  Google Scholar 

  16. Marin Kobilarov, Keenan Crane, and Mathieu Desbrun. Lie group integrators for animation and control of vehicles. ACM Transactions on Graphics, 28(2), April 2009.

  17. Marin Kobilarov, Jerrold Marsden, and Gaurav Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete Contin. Dyn. Syst. Ser. S, 3(1):61–84, 2010.

    MathSciNet  MATH  Google Scholar 

  18. Jair Koiller. Reduction of some classical nonholonomic systems with symmetry. Arch. Rational Mech. Anal., 118(2):113–148, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  19. Manuel de León, Juan C. Marrero, and David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi theory. Applications to nonholonomic mechanics. 2008. Preprint, arXiv:0801.4358.

  20. Manuel de León and David Martín de Diego. On the geometry of nonholonomic Lagrangian systems. J. Math. Phys., 37(7):3389–3414, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. Juan C. Marrero, David Martín de Diego, and Eduardo Martínez. Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids. Nonlinearity. 19(6):1313–1348, 2006. Corrigendum: Nonlinearity 19 (2006), no. 12, 3003–3004.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numer., 10:357–514, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. McLachlan and M. Perlmutter. Integrators for nonholonomic mechanical systems. J. Nonlinear Sci., 16(4):283–328, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  24. Yuri I. Neĭmark and Nikolai A. Fufaev. Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, Vol. 33. American Mathematical Society, Providence, R.I., 1972.

    Google Scholar 

  25. George W. Patrick. Lagrangian mechanics without ordinary differential equations. Rep. Math. Phys., 57(3):437–443, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  26. Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman J. C. Berendsen. Numerical integration of the cartesian equations of motion of a system with constraint: molecular dynamics of n-alkanes. J. Comput. Physics. 23:327–341, 1977.

    Article  Google Scholar 

  27. J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian problems. volume 7 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London, 1994.

    Google Scholar 

  28. Anatoly M. Vershik and L. D. Faddeev. Differential geometry and Lagrangian mechanics with constraints. Sov. Phys. Dokl., 17:34–36, 1972.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kobilarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobilarov, M., de Diego, D.M. & Ferraro, S. Simulating nonholonomic dynamics. SeMA 50, 61–81 (2010). https://doi.org/10.1007/BF03322542

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322542

Key words

AMS subject classifications

Navigation