Skip to main content
Log in

Zu Kepplers Conchoid-Konstruktion

  • Historical eassy
  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The physical models introduced by Johannes Keppler into astronomy were not only much more accurate than their predecessors, they were innovative theoretically to such an extent that they stand quite alone. The conchoid construction he presented in his ”Astronomia Nova” (1609) seems to have almost escaped notice in the literature. A misguided and sometimes unwitting interpretation of Keppler’s physical astronomy as a precursor to Newton’s celestial mechanics has impeded any fair analysis of it. Keppler’s physics is a physics of phases and frequencies, as Newton’s is a physics of accelerations. The purpose of this paper is to outline the impact of Keppler’s conchoid construction. His dynamical approach which is a profoundly original filter bank construction has found recently an unexpected revelation in magnetic resonance tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. J. Alberts, Keplers Traum. Klett-Cotta, Stuttgart 1989

    Google Scholar 

  2. A. Beer, P. Beer, Kepler — Four Hundred Years, Proceedings of Conferences held in Honour of Johannes Kepler. Vistas in Astronomy, Vol. 18. Pergamon, Oxford, New York 1975

  3. R.P. Boas,Jr., Summation formulas and band-limited signals. Tôhoku Math. J. 24, 121–125 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. W.G. Bradley, Jr., D.J. Atkinson, D.-Y. Chen, Using high-performance gradients. In: Advanced MR Imaging Techniques, W.G. Bradley, Jr., G.M. Bydder, editors, pp. 31–62, Martin Dunitz, London 1997

    Google Scholar 

  5. B. Burke Hubbard, The World According to Wavelets. A.K. Peters, Wellesley, MS 1996

  6. C.-N. Chen, D.I. Hoult, Biomedical Magnetic Resonance Technology. Adam Hilger, Bristol, New York 1989

    Google Scholar 

  7. M.S. Cohen, R.M. Weisskof F, Ultra-fast imaging. Magn. Reson. Imaging 9, 1–37 (1991)

    Google Scholar 

  8. E.R. Davies, Electronics, Noise, and Signal Recovery. London, San Diego, New York 1993

  9. R.L. DeLaPaz, Echo-planar imaging. In: Current Review of MRI, J. Beltran, editor, pp. 51–61, Current Medicine, Philadelphia 1995

    Google Scholar 

  10. A.M. DeSchepper, P.M. Parizel, F. Ramon, L.De Beuckeleer, and J.E. Vandevenne, editors, Imaging of Soft Tissue Tumors. Springer-Verlag, Berlin, Heidelberg, New York 1997

    Google Scholar 

  11. D. Deutsch, Die Physik der Welterkenntnis: Auf dem Weg zum universellen Verstehen. Birkhäuser Verlag, Basel, Boston, Berlin 1996

    Google Scholar 

  12. G. Doebel, Johannes Keppler: Er veränderte das Weltbild. Verlag Styria, Graz, Wien, Köln 1983

    Google Scholar 

  13. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. I. Addison-Wesley, Redwood City, Menlo Park, Reading 1989

  14. J. Gaa, S. Saini, Echo-planar magnetic resonance imaging of the abdomen. In: Current Review of MRI, J. Beltran, editor, pp. 266–272, Current Medicine, Philadelphia 1995

    Google Scholar 

  15. P. Gabriel, Matrizen, Geometrie, Lineare Algebra. Birkhäuser, Basel, Boston, Berlin 1996

    Book  MATH  Google Scholar 

  16. D.G. Gadian, NMR and its Applications to Living Systems. Second edition, Oxford University Press, Oxford, New York, Tokyo 1995

    Google Scholar 

  17. R.J. Gillies, editor, NMR in Physiology and Biomedicine. Academic Press, San Diego, New York, Boston 1994

    Google Scholar 

  18. E.H. Gombrich, Symmetrie, Wahrnehmung und künstlerische Gestaltung. In: Symmetrie in Geistes- und Naturwissenschaft, herausgegeben von R. Wille, pp. 94–119, Springer-Verlag, Berlin, Heidelberg, New York 1988

    Chapter  Google Scholar 

  19. C.B. Grossman, Magnetic Resonance Imaging and Computed Tomography of the Head and Spine. Second edition, Williams & Wilkins, Baltimore, Philadelphia, London 1996

    Google Scholar 

  20. P. Horowitz, W. Hill, The Art of Electronics. Second edition, Cambridge University Press, Cambridge 1989

    Google Scholar 

  21. A. Koestler, The Sleepwalkers. The Universal Library, Grosset and Dunlap, New York 1963

    Google Scholar 

  22. J. Mattson, M. Simon, The Pioneers of NMR and Magnetic Resonance in Medicine: The Story of MRI. Bar-Ilan University Press, Ramat Gan 1996

    Google Scholar 

  23. C. Mead, L. Conway, Introduction to VLSI Systems. Addison-Wesley Publishing Company, Reading, Menlo Park, London 1980

    Google Scholar 

  24. C.C. Moore, J.A. Wolf, Square integrable representations of nilpotent groups. Trans. Amer. Math. Soc. 185, 445–462 (1973)

    Article  MathSciNet  Google Scholar 

  25. M.E. Moseley, G.H. Glover, Functional MR imaging: Capabilities and limitations. In: Functional Neuroimaging, B.P. Drayer, editor, Neuroimaging Clinics of North America Vol. 5, No. 2, 161–191 (1995)

  26. O. Neugebauer, The Exact Sciences in Antiquity. Princeton University Press, Princeton, NJ 1952

    MATH  Google Scholar 

  27. V.H. Patel, L. Friedman, MRI of the Brain: Normal Anatomy and Normal Variants. W.B. Saunders Company, Philadelphia, London, Toronto 1997

    Google Scholar 

  28. B. Pourciau, Reading the master: Newton and the birth of celestial mechanics. Amer. Math. Monthly 104, 1–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. W.J. Schempp: Magnetic Resonance Imaging: Mathematical Foundations and Applications. J. Wiley & Sons, New York (in press)

  30. J. Schwitter, H. Sakuma, M. Saeed, M.F. Wendland, and C.B. Higgins, Very fast cardiac imaging. In: Cardiac MR Imaging, L.M. Boxt, editor, MRI Clinics of North America Vol. 4, No. 2, 419–432 (1996)

  31. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL 1964

    Google Scholar 

  32. B. Stephenson, Kepler’s Physical Astronomy. Princeton University Press, Princeton, NJ 1987

    Book  MATH  Google Scholar 

  33. C.L. Truwit, T.E. Lempert, High Resolution Atlas of Cranial Neuroanatomy. Williams & and Wilkins, Baltimore, Philadelphia, Hong Kong 1994

    Google Scholar 

  34. D. Uhlenbrock, MRT und MRA des Kopfes: Indikationsstellung, Wahl der Untersuchungsparameter, Befundinterpretation. Georg Thieme Verlag, Stuttgart, New York 1996

    Google Scholar 

  35. G.K. von Schulthess, Echoplanar imaging. In: Magnetic Resonance Imaging of the Body, third edition, C.B. Higgins, H. Hricak, and C.A. Helms, editors, pp. 87–100, Lippincott-Raven Publishers, Philadelphia, New York 1997

    Google Scholar 

  36. P.P. Vaidyanathan, Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs, NJ 1993

  37. M.S. van der Knaap, J. Valk, Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. 2. Auflage, Springer-Verlag, Berlin, Heidelberg, New York 1995

    Google Scholar 

  38. D.M. Weber, Echo planar imaging. In: Progressi in RM, Note di Tecnica, a Cura di M. Cammisa e T. Scarabino, pp. 47-66, Guido Gnocchi editore, Napoli 1995

  39. R.M. Weisskoff, M.S. Cohen, Echo planar imaging: Technology and techniques. In: Advanced MR Imaging Techniques, W.G. Bradley, Jr., G.M. Bydder, editors, pp. 63–97, Martin Dunitz, London 1997

    Google Scholar 

  40. H. Weyl, Symmetrie. Birkhäuser Verlag, Basel, Stuttgart 1955; Englische Ausgabe: Symmetry. Princeton University Press, Princeton, NJ 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Johannes Schempp.

Additional information

Herrn Professor Dr.Dr.h.c. Karl Zeller zum 73. Geburtstag am 28. Dezember 1997 in Dankbarkeit gewidmet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schempp, W.J. Zu Kepplers Conchoid-Konstruktion. Results. Math. 32, 352–390 (1997). https://doi.org/10.1007/BF03322146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322146

Navigation