Skip to main content

A Time–Frequency Analysis Perspective on Feynman Path Integrals

  • Chapter
  • First Online:
Landscapes of Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The purpose of this expository paper is to highlight the starring role of techniques from time–frequency analysis in some recent contributions concerning the mathematical theory of Feynman path integrals. We hope to draw the interest of mathematicians working in time–frequency analysis on this topic, as well as to illustrate the benefits of this fruitful interplay for people working on path integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remark that in physics literature the term “propagator” is usually reserved to the integral kernel u t of U(t), see below. This may possibly lead to confusion since it is in conflict with the traditional nomenclature adopted in the analysis of PDEs.

  2. 2.

    We set \(\mathcal {Q}_k\) for the Fourier multiplier whose symbol is a suitably smoothed version of the characteristic function of the dyadic annulus \(R_k = \{\xi \in \mathbb {R}^d \, : \, 2^{k-1} \le |\xi | < 2^k \}\), \(k \in \mathbb {N}\); we also define R 0 to be the unit ball.

  3. 3.

    We denote by \(C^0_b(\mathbb {R},X)\) the space of continuous and bounded functions \(\mathbb {R}\to X\).

  4. 4.

    To be precise, the result provided here concerns conditions under which the embedding \(M_{s}^{p,q}\cdot M_{s}^{p,q}\hookrightarrow M_{s}^{p,q}\) is continuous; this means that the algebra property eventually holds up to a constant. It is well known that one may provide an equivalent norm for which the boundedness estimate holds with C = 1 (cf. [61, Thm. 10.2]). This condition will be tacitly assumed whenever concerned with Banach algebras from now on.

  5. 5.

    The factor 2π derives from the normalization of the Fourier transform adopted in this section.

References

  1. S. Albeverio, and R. Høegh-Krohn. Oscillatory integrals and the method of stationary phase in infinitely many dimensions, with applications to the classical limit of quantum mechanics. I. Invent. Math.40(1) (1977), 59–106.

    Google Scholar 

  2. S. Albeverio, P. Blanchard, and R. Høegh-Krohn. Feynman path integrals and the trace formula for the Schrödinger operators. Comm. Math. Phys.83(1) (1982), 49–76.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Albeverio, and Z. Brzeźniak. Finite-dimensional approximation approach to oscillatory integrals and stationary phase in infinite dimensions. J. Funct. Anal.113(1) (1993), 177–244.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Albeverio, R. Høegh-Krohn, and S. Mazzucchi. Mathematical theory of Feynman path integrals. An Introduction. Lecture Notes in Mathematics 523. Springer-Verlag, Berlin, 2008.

    Google Scholar 

  5. S. Albeverio, and S. Mazzucchi. A unified approach to infinite-dimensional integration. Rev. Math. Phys.28(2) (2016), 1650005, 43 pp.

    Article  MathSciNet  MATH  Google Scholar 

  6. G.D. Birkhoff. Quantum mechanics and asymptotic series. Bull. Amer. Math. Soc.39 (1933), no. 10, 681–700.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Brenner, V. Thomée, and L.B. Wahlbin. Besov spaces and applications to difference methods for initial value problems. Springer-Verlag, Berlin-New York, 1975.

    Book  MATH  Google Scholar 

  8. L. M. Brown (ed.). Feynman’s Thesis. A New Approach to Quantum Theory. World Scientific, Hackensack, 2005.

    Google Scholar 

  9. R. Cameron. A family of integrals serving to connect the Wiener and Feynman integrals. J. Math. and Phys.39 (1960), 126–140.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Cordero, M. de Gosson, and F. Nicola. Semi-classical time-frequency analysis and applications. Math. Phys. Anal. Geom.20 (2017), no. 4, Art. 26, 23 pp.

    Google Scholar 

  11. E. Cordero, K. Gröchenig, F. Nicola, and L. Rodino. Wiener algebras of Fourier integral operators. J. Math. Pures Appl.99(2) (2013), 219–233.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Cordero, K. Gröchenig, F. Nicola, and L. Rodino. Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class. J. Math. Phys.55(8) (2014), 081506.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Cordero, F. Nicola, and L. Rodino. Sparsity of Gabor representation of Schrödinger propagators. Appl. Comput. Harmon. Anal.26 (2009), no. 3, 357–370.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Cordero and F. Nicola. On the Schrödinger equation with potential in modulation spaces. J. Pseudo-Differ. Oper. Appl.5(3) (2014), 319–341.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Cordero, F. Nicola, and S. I. Trapasso. Almost diagonalization of τ-pseudodifferential operators with symbols in Wiener amalgam and modulation spaces. J. Fourier Anal. Appl.25 (2019), no. 4, 1927–1957.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. D’Ancona, and F. Nicola. Sharp L p estimates for Schrödinger groups. Rev. Mat. Iberoam.32 (2016), no. 3, 1019–1038.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. de Gosson. Short-time propagators and the Born-Jordan quantization rule. Entropy20(11) (2018), 869.

    Article  MathSciNet  Google Scholar 

  18. M. de Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Birkhäuser/Springer Basel AG, Basel, 2011.

    Google Scholar 

  19. K.-J. Engel, and R. Nagel. A Short Course on Operator Semigroups. Springer, New York, 2006.

    MATH  Google Scholar 

  20. H.G. Feichtinger, F. Nicola and S.I. Trapasso. On exceptional times for pointwise convergence of integral kernels in Feynman-Trotter path integrals. arXiv:2004.06017.

    Google Scholar 

  21. H.G. Feichtinger. On a new Segal algebra. Monatsh. Math.92(4) (1981), 269–289.

    Article  MathSciNet  MATH  Google Scholar 

  22. H.G. Feichtinger. Modulation spaces on locally compact Abelian groups. In Proc. Int. Conf. Wavelets and Applications, Allied Publishers, New Delhi, 2003, pp. 99–140. Reprint of 1983.

    Google Scholar 

  23. R. Feynman. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys.20 (1948), 367–387.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Feynman. Space-time approach to quantum electrodynamics. Phys. Rev. (2) 76 (1949), 769–789.

    Google Scholar 

  25. R. Feynman, and A.R. Hibbs. Quantum Mechanics and Path Integrals. Emended Edition. Dover Publications, Mineola, 2005.

    MATH  Google Scholar 

  26. G.B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, Princeton, 1989.

    Book  MATH  Google Scholar 

  27. D. Fujiwara. A construction of the fundamental solution for the Schrödinger equation. J. Anal. Math.35, 41–96, 1979.

    Article  MATH  Google Scholar 

  28. D. Fujiwara. Remarks on convergence of some Feynman path integrals. Duke Math. J.47 (1980), 559–600.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Fujiwara. Rigorous Time Slicing Approach to Feynman Path Integrals. Springer, Tokyo, 2017.

    Book  MATH  Google Scholar 

  30. K. Gröchenig. Foundations of Time-frequency Analysis. Birkhäuser, Boston, 2001.

    Book  MATH  Google Scholar 

  31. K. Gröchenig. A pedestrian’s approach to pseudodifferential operators. In Harmonic Analysis and Applications, 139–169, Birkhäuser, Boston, 2006.

    Google Scholar 

  32. K. Gröchenig. Time-frequency analysis of Sjöstrand’s class. Rev. Mat. Iberoam.22(2) (2006), 703–724.

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Gröchenig, and Z. Rzeszotnik. Banach algebras of pseudodifferential operators and their almost diagonalization. Ann. Inst. Fourier58 (2008), no. 7, 2279–2314.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Grosche, and F. Steiner. Handbook of Feynman path integrals. Springer, Berlin, 1998.

    MATH  Google Scholar 

  35. L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z.219 (1995), no. 3, 413–449.

    Article  MathSciNet  MATH  Google Scholar 

  36. W. Ichinose. On the formulation of the Feynman path integral through broken line paths. Comm. Math. Phys189(1) (1997), 17–33.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Ichinose. Convergence of the Feynman path integral in the weighted Sobolev spaces and the representation of correlation functions. J. Math. Soc. Japan55(4) (2003), 957–983.

    Article  MathSciNet  MATH  Google Scholar 

  38. K. Itô. Wiener integral and Feynman integral. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, 227–238. Univ. California Press, Berkeley, 1961.

    Google Scholar 

  39. K. Itô. Generalized uniform complex measures in the Hilbertian metric space with their application to the Feynman integral. In Proc. 5th Berkeley Sympos. Math. Statist. and Prob., Vol. II , 145–161. Univ. California Press, Berkeley, 1967.

    Google Scholar 

  40. L. Kapitanski, I. Rodnianski, and K. Yajima. On the fundamental solution of a perturbed harmonic oscillator. Topol. Methods Nonlinear Anal.9(1) (1997), 77–106.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Kleinert. Path Integrals in Quantum Mechanics, Statistics and Polymer Physics. World Scientific, Singapore, 1995.

    Book  MATH  Google Scholar 

  42. M. Kobayashi and M. Sugimoto. The inclusion relation between Sobolev and modulation spaces. J. Funct. Anal.260 (2011), no. 11, 3189–3208.

    Article  MathSciNet  MATH  Google Scholar 

  43. N. Kumano-go. Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math.128(3) (2004), 197–251.

    Article  MathSciNet  MATH  Google Scholar 

  44. N. Kumano-go. A construction of the fundamental solution for Schrödinger equations. J. Math. Sci. Univ. Tokyo2 (1995), 441–498.

    MathSciNet  MATH  Google Scholar 

  45. N. Kumano-go and D. Fujiwara. Smooth functional derivatives in Feynman path integrals by time slicing approximation. Bull. Sci. Math.129(1) (2005), 57–79.

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Makri and W. H. Miller. Correct short time propagator for Feynman path integration by power series expansion in Δt. Chem. Phys. Lett., 151, 1–8, 1988.

    Google Scholar 

  47. N. Makri and W. H. Miller. Exponential power series expansion for the quantum time evolution operator. J. Chem. Phys., 90(2), 904–911, 1989.

    Article  Google Scholar 

  48. N. Makri. Feynman path integration in quantum dynamics. Comput. Phys. Comm., 63(1), 389–414, 1991.

    Article  MATH  Google Scholar 

  49. V.P. Maslov. Théorie des Perturbations et Méthodes Asymptotiques. (French translation from Russian) Dunod, Paris, 1970.

    Google Scholar 

  50. S. Mazzucchi. Mathematical Feynman Path Integrals and Their Applications. World Scientific, 2009.

    Book  MATH  Google Scholar 

  51. R. Melrose. Geometric Scattering Theory. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  52. A. Miyachi. On some Fourier multipliers for \(H^p(\mathbb {R}^n)\). J. Fac. Sci. Univ. Tokyo Sect. IA Math.27 (1980), no. 1, 157–179.

    Google Scholar 

  53. E. Nelson. Feynman integrals and Schrödinger equation. J. Math. Phys.5 (1964), 332–343.

    Article  MATH  Google Scholar 

  54. F. Nicola. Convergence in L p for Feynman path integrals. Adv. Math.294 (2016), 384–409.

    Article  MathSciNet  MATH  Google Scholar 

  55. F. Nicola. On the time slicing approximation of Feynman path integrals for non-smooth potentials. J. Anal. Math.137(2) (2019), 529–558.

    Article  MathSciNet  MATH  Google Scholar 

  56. F. Nicola and S.I. Trapasso. Approximation of Feynman path integrals with non-smooth potentials. J. Math. Phys.60 (2019), 102103.

    Article  MathSciNet  MATH  Google Scholar 

  57. F. Nicola and S.I. Trapasso. On the pointwise convergence of the integral kernels in the Feynman-Trotter formula. Comm. Math. Phys. (2019) - DOI: 10.1007/s00220-019-03524-2.

    Google Scholar 

  58. M. Reed and B. Simon. Methods of Modern Mathematical Physics. Vol. I: Functional analysis. Academic Press, 1981.

    Google Scholar 

  59. M. Reed and B. Simon. Methods of Modern Mathematical Physics. Vol. II: Fourier analysis, self-adjointness. Elsevier, 1975.

    Google Scholar 

  60. M. Reich and W. Sickel. Multiplication and composition in weighted modulation spaces. In Mathematical analysis, probability and applications - plenary lectures, 103–149, Springer Proc. Math. Stat., 177, Springer, 2016.

    Google Scholar 

  61. W. Rudin. Functional analysis. Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, New York, 1991.

    Google Scholar 

  62. T. Sauer. Remarks on the origin of path integration: Einstein and Feynman. In Proceedings of the 9th International Conference on Path Integrals: New Trends and Perspectives, 3–13, World Sci. Publ., Hackensack, NJ, 2008.

    Google Scholar 

  63. A. Seeger, C.D. Sogge, and E.M. Stein. Regularity properties of Fourier integral operators. Ann. of Math. (2) 134 (1991), no. 2, 231–251.

    Google Scholar 

  64. J. Sjöstrand. An algebra of pseudodifferential operators. Math. Res. Lett.1(2) (1994), 185–192.

    Article  MathSciNet  MATH  Google Scholar 

  65. E.M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, 1993.

    MATH  Google Scholar 

  66. J. Toft. Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I. J. Funct. Anal.207 (2004), no. 2, 399–429.

    Google Scholar 

  67. J. Toft. Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II. Ann. Global Anal. Geom.26 (2004), no. 1, 73–106.

    Google Scholar 

  68. B. Wang, Z. Huo, C. Hao and Z. Guo. Harmonic Analysis Method for Nonlinear Evolution Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

    Book  MATH  Google Scholar 

  69. M. W. Wong. Weyl transforms. Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ivan Trapasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trapasso, S.I. (2020). A Time–Frequency Analysis Perspective on Feynman Path Integrals. In: Boggiatto, P., et al. Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-56005-8_10

Download citation

Publish with us

Policies and ethics