Skip to main content
Log in

Non-Linear Rational Riemann-Hilbert-Problems with Circular Target Curves

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

This article may be considered as a continuation of [3], where we studied non-linear Riemann-Hilbert problems with circular target curves ¦wc¦ = r and Hölder continuous coefficients c and r. Here we assume that c and r 2 are rational functions and emphasize algorithmic and numerical aspects. It is shown that all solutions of the problem are rational and can be obtained by solving an interpolation problem of (generalized) Nevanlinna-Pick type. This problem is in turn reduced to a linear system, which leads to efficient (and stable) numerical methods. Special emphasis is on the Laurent case, which is of importance in applications. We propose an a- posteriori estimate which allows one to verify the accuracy of the approximate solution and report on some test calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Baratchart, J. Leblond and J. R. Partington, Problems of Adamjan-Arov-Krein type on subsets of the circle and minimal norm extensions, Constructive Approximation 16 (2000), 333–357.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Fejér, Über trigonometrische Polynome, J. Math. 146 (1916), 53–82.

    Google Scholar 

  3. C. Glader and E. Wegert, Nonlinear Riemann-Hilbert Problems with Circular Target Curves, Math. Nachr. 281 no.9 (2008), 1221–1239.

    Article  MathSciNet  MATH  Google Scholar 

  4. —, Nonlinear Riemann-Hilbert Problems with Circular Target Curves, II, in preparation.

  5. G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1983.

  6. L.-S. Hahn, Complex Numbers and Geometry, Mathematical Association of America, 1994.

  7. J. W. Helton, O. Merino and T. E. Walker, Algorithms for optimizing over analytic functions, Indiana Univ. Math. J. 42 (1993), 839–874.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. W. Helton and O. Merino, Novel approach to accelerating Newton’s method for supnorm optimization arising in H∞-control, J. Optim. Theory Appl. 78 (1993), 553–578.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ç. K. Koç and G. Chen, Parallel algorithms for Nevanlinna-Pick interpolation: the scalar case, Intern. J. Computer Math. 40 (1991), 99–115.

    Article  MATH  Google Scholar 

  10. S. G. Mikhlin and S. Prössdorf, Singular Integral Operators, Akademie Verlag, 1986.

  11. V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions: Theory and Applications, Chapman & Hall/CRC, 2002.

  12. R. Nevanlinna, Über beschränkte Funktionen, die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad. Sc. Fenn. Math. (A) 13 no.1 (1919), 1–71.

    MathSciNet  Google Scholar 

  13. R. Nevanlinna, Uber beschränkte analytische Funktionen, Ann. Acad. Sc. Fenn. Math. (A) 32 no.7 (1929), 1–75.

    Google Scholar 

  14. J. R. Partington, Interpolation, Identification, and Sampling, Oxford Science Publications, Clarendon Press, 1997.

  15. V. V. Peller, Hankel Operators and Their Applications, Springer, 2003.

  16. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer, 1925.

  17. J. Prestin, Trigonometric interpolation in Hölder spaces, J. Approx. Theory 53 (1988), 145–154.

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Schur, Über Potenzreihen, die im Inneren des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205–232; Engl. Transl. in: I. Gohberg (ed.), I. Schur, Methods in Operator Theory and Signal Processing, Operator Theory: Advances and Applications 18, Birkhäuser, 1986, pp.31-59.

    Google Scholar 

  19. S. Takahashi, Extension of the theorems of Carathéodory-Toeplitz-Schur and Pick, Pacific J. Math. 138 no.2 (1989), 391–399.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Takahashi, Nevanlinna parametrizations for the extended interpolation problem, Pacific J. Math. 146 no.1 (1990), 115–129.

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Wegert, An iterative method for solving nonlinear Riemann-Hilbert problems, J. Comput. Appl. Math. 29 no.3 (1990), 311–327.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Wegert, Nonlinear Boundary Value Problems for Holomorphic Functions and Singular Integral Equations, Akademie Verlag, Berlin, 1992, 240pp.

    MATH  Google Scholar 

  23. E. Wegert, Iterative methods for discrete nonlinear Riemann-Hilbert problems, J. Comput. Appl. Math. 46 no.1–2 (1993), 143–163.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Wegmann, Ein Iterationsverfahren zur konformen Abbildung (in German), Numer. Math. 30 (1978), 453–466.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Wegmann, An iterative method for conformal mapping, J. Comput. Appl. Math. 14 (1986), 7–18.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Wegmann, Discrete Riemann-Hilbert problems, interpolation of simply closed curves, and numerical conformal mapping, J. Comput. Appl. Math. 23 no.3. (1988), 323–352.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Glader.

Additional information

The first author was supported by the Magnus Ehrnrooth Foundation. The second author was supported by grant We 1704-8 of the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glader, C., Wegert, E. Non-Linear Rational Riemann-Hilbert-Problems with Circular Target Curves. Comput. Methods Funct. Theory 9, 653–678 (2009). https://doi.org/10.1007/BF03321750

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321750

Keywords

2000 MSC

Navigation