Skip to main content
Log in

Reversible Biholomorphic Germs

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let G be a group. We say that an element fG is reversible in G if it is conjugate to its inverse, i.e. there exists gG such that g −1 fg = f −1. We denote the set of reversible elements by R(G). For fG, we denote by R f(G) the set (possibly empty) of reversers of f, i.e. the set of gG such that g −1 fg = f −1. We characterise the elements of R(G) and describe each R f(G), where G is the the group of biholomorphic germs in one complex variable. That is, we determine all solutions to the equation fgf = g, in which f and g are holomorphic functions on some neighbourhood of the origin, with f(0) = g(0) = 0 and f′(0) ≠ 0 ≠ g′(0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Baker, Permutable power series and regular iteration, J. Australian Math. Soc. 2 (1962), 265–294.

    Article  MATH  Google Scholar 

  2. I. N. Baker, Fractional iteration near a fixpoint of multiplier 1, J. Australian Math. Soc. 4 (1964), 143–148.

    Article  MATH  Google Scholar 

  3. I. N. Baker, Nonembeddable functions with a fixpoint of multiplier 1, Math. Zeitschr. 99 (1967), 377–384.

    Article  MATH  Google Scholar 

  4. L. S. O. Liverpool, Fractional iteration near a fix point of multiplier 1, J. Lond. Math. Soc. (2) 9 (1975), 599–609.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Ahern and X. Gong, A complete classification for pairs of real analytic curves in the complex plane with tangential intersection, J. Dyn. Control Syst. 11 (2005), 1–71.

    Article  MathSciNet  MATH  Google Scholar 

  6. Yu. S. Ilyashenko, Nonlinear Stokes phenomena, in: Nonlinear Stokes Phenomena. Adv. Sov. Math. 14, American Math. Soc., Providence, RI. (1993), 1–55.

    Google Scholar 

  7. M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, 1990.

  8. J. Lubin, Nonarchimedean dynamical systems, Compositio Math. 94 (1994), 321–346.

    MathSciNet  MATH  Google Scholar 

  9. B. Malgrange, Travaux dÉcalle et de Martinet-Ramis sur les systemes dynamiques, Seminaire Bourbaki 34e année 1981/82, Asterisque 582 (1981), 59–73.

    Google Scholar 

  10. A. G. O’Farrell, Composition of involutive power series, and reversible series, Comput. Methods Funct. Theory 8 (2008), 173–193.

    MathSciNet  MATH  Google Scholar 

  11. G. Szekeres, Fractional iteration of entire and rational functions, J. Australian Math. Soc. 4 (1964), 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. M. Voronin, Analytic classification of germs of conformal maps (C, 0) → (C, 0) with linear part the identity, Funct. Anal. Appl. 15 (1981) no.1, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. M. Voronin, Analytic classification of pairs of involutions and its applications, Funct. Anal. Appl. 16 (1982) no.2, 94–100

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ahern.

Additional information

The second author was supported by Grant SFI RFP05/MAT0003 and the ESF Network HCAA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahern, P., O’Farrell, A.G. Reversible Biholomorphic Germs. Comput. Methods Funct. Theory 9, 473–484 (2009). https://doi.org/10.1007/BF03321741

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321741

Keywords

2000 MSC

Navigation