Skip to main content
Log in

A Complete Classification for Pairs of Real Analytic Curves in the Complex Plane with Tangential Intersection

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract.

We study the group structure of centralizers of a holomorphic mapping that is tangent to the identity. We give a complete classification for pairs of real analytic curves intersecting tangentially via the Ecalle—Voronin theory. We also classify pairs of one-dimensional holomorphic involutions that have a high-order tangency, real analytic mappings on the real line, and exceptional non-Abelian subgroups of Cerveau and Moussu. Consequently, we prove the existence of holomorphic mappings zz + O(2) that are reversible by a formal antiholomorphic mapping, but not by any (convergent) antiholomorphic one. We also prove the existence of local real analytic mappings on the real line that are not equivalent with respect to any local real analytic diffeomorphism and yet whose complexifications are holomorphically equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. P. Ahern and J.-P. Rosay, Entire functions, in the classification of differentiable germs tangent to the identity, in one or two variables. Trans. Amer. Math. Soc. 347 (1995), No. 2, 543–572.

    Google Scholar 

  2. 2. I. N. Baker, Permutable power series and regular iteration. J. Austr. Math. Soc. 2 (1961/1962), 265–294.

    Google Scholar 

  3. 3. M. Berthier, D. Cerveau, and R. Meziani, Transformations isotropes des germes de feuilletages holomorphes. J. Math. Pures Appl. (9) 78 (1999), No. 7, 701–722.

    Google Scholar 

  4. 4. D. Cerveau and R. Moussu, Groupes d’automorphismes de (C, 0) et equations différentielles ydy + ⋯ = 0. Bull. Soc. Math. France 116 (1988), No. 4, 459–488.

    Google Scholar 

  5. 5. J. Écalle, Théorie itérative: introduction à la théorie des invariants holomorphes. J. Math. Pures Appl. (9) 54 (1975), 183–258.

    Google Scholar 

  6. 6. J. Écalle, Les fonctions résurgentes, I, II. In: Publications Mathématiques d’Orsay 81, 5–6, 1–247, 248–531. Université de Paris-Sud, Département de Mathématique, Orsay (1981).

    Google Scholar 

  7. 7. P. M. Elizarov, Yu. S. Il’yashenko, A. A. Shcherbakov, and S. M. Voronin, Finitely generated groups of germs of one-dimensional conformal mappings and invariants for complex singular points of analytic foliations of the complex plane. In: Nonlinear Stokes phenomena, Adv. Sov. Math. 14 Amer. Math. Soc., Providence, Rhode Island (1993), 57–105.

    Google Scholar 

  8. 8. X. Gong, Conformal maps and non-reversibility of elliptic area-preserving maps. Math. Z. 237 (2001), No. 2, 275–300.

    Google Scholar 

  9. 9. Yu. S. Il’yashenko, Nonlinear Stokes phenomena. In: Nonlinear Stokes phenomena, Adv. Sov. Math. 14. Amer. Math. Soc., Providence, Rhode Island (1993), 1–55.

    Google Scholar 

  10. 10. L. S. O. Liverpool, Fractional iteration near a fix point of multiplier 1. J. London Math. Soc. (2) 9 (1974/75), 599–609.

    Google Scholar 

  11. 11. E. Kasner, Conformal geometry. In: Proc. Fifth Int. Math. Congr. 2 (1913), 81–87.

    Google Scholar 

  12. 12. E. Kasner, Conformal classification of analytic arcs or elements: Poincaré’s local problem of conformal geometry. Trans. Amer. Math. Soc. 16 (1915), No. 3, 333–349.

    Google Scholar 

  13. 13. B. Malgrange Travaux d’Écalle et de Martinet—Ramis sur les systémes dynamiques. Bourbaki Seminar, 1981/1982, Astérisque 92–93, Soc. Math. France, Paris (1982), 59–73.

    Google Scholar 

  14. 14. I. Nakai, The classification of curvilinear angles in the complex plane and the groups of holomorphic diffeomorphisms. Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), No. 2, 313–334.

    Google Scholar 

  15. 15. G. A. Pfeiffer, On the conformal geometry of analytic arcs. Amer. J. Math. 37 (1915), No. 4, 395–430.

    Google Scholar 

  16. 16. G. A. Pfeiffer, On the conformal mapping of curvilinear angles. The functional equation ϕ[f(x)] = a1ϕ(x). Trans. Amer. Math. Soc. 18 (1917), No. 2, 185–198.

    Google Scholar 

  17. 17. H. Poincaré, Les fonctions analytiques de deux variables et la representation conforme. Rend. Circ. Mat. Palermo 23 (1907), 185–220.

    Google Scholar 

  18. 18. A. A. Shcherbakov, Topological classification of germs of conformal mappings with an identical linear part. Vestn. Moskov. Univ. Ser. I. Mat. Mekh. 3 (1982), 52–57.

    Google Scholar 

  19. 19. J.-M. Trépreau, Discrimination analytique des difféomorphismes résonants de (ℂ, 0) et réflexion de Schwarz. Astérisque 284 (2003), 271–319.

    Google Scholar 

  20. 20. S. M. Voronin, Analytic classiffication of germs of conformal mappings (ℂ, 0) → (ℂ, 0). Funct. Anal. Appl. 15 (1981), No. 1, 1–13.

    Google Scholar 

  21. 21. S. M. Voronin, Analytic classiffication of pairs of involutions and its applications. Funct. Anal. Appl. 16 (1982), No. 2, 94–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Ahern or Xianghong Gong.

Additional information

2000 Mathematics Subject Classification. 30C35, 32B10.

Research of the second author was partially supported by the NSF grant DMS-0305474.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahern, P., Gong, X. A Complete Classification for Pairs of Real Analytic Curves in the Complex Plane with Tangential Intersection. J Dyn Control Syst 11, 1–71 (2005). https://doi.org/10.1007/s10883-005-0001-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-005-0001-7

Key words and phrases.

Navigation