Skip to main content
Log in

Modification of Antioxidant Status of Host Cell in Response to Bougainvillea Antiviral Proteins

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bougainvillea xbuttiana antiviral proteins (AVPs) exhibited high antioxidant activity as measured by ferric reducing / antioxidant (FRAP) power assay. These AVPs were also found to modify activities of antioxidant enzymes like superoxide dismutase, peroxidase and catalase. The activities of superoxide dismutase and peroxidase increased, while the activity of catalase decreased in Tobacco mosaic virus (TMV) infected tobacco leaves. The trend was reversed when the leaves were treated with AVP alone. However, in TMV + AVP treated leaves, the activities of all the three enzymes were found to be midway between the activities obtained with other two treatments. It is therefore, suggested that Bougainvillea AVPs might be controlling viral diseases by scavenging reactive oxygen species as well as by altering host plant cell metabolism to maintain its antioxidant status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AVPs:

antiviral proteins

CAT:

catalase

FRAP:

ferric reducing/antioxidant power

HR:

hypersensitive response

POD:

peroxidase

ROS:

reactive oxygen species

SA:

salicylic acid

SAR:

systemic acquired resistance

SOD:

superoxide dismutase

SRV:

sunnhemp rosette virus

TMV:

tobacco mosaic virus.

References

  1. Verma H N, Varsha & Baranwal V K, In Antiviral proteins in higher plants. (M Chessin, D DeBorde, A Zipf, Editors). CRC Press, Boca Raton, Florida (1995) pp 23–37.

    Google Scholar 

  2. Varma A, In Crop protection and sustainable agriculture. Wiley Chichester, Ciba Foundation Symposium 177, (1993) pp 40–157.

    Google Scholar 

  3. Mittler R, Trends Plant Sci, 7 (2002) 405.

    Article  PubMed  CAS  Google Scholar 

  4. Greenberg J T, Guo A L, Klessig D F & Ausubel FM, Cell, 77 (1994) 551.

    Article  PubMed  CAS  Google Scholar 

  5. Bowler C, Slooten L, Vandenbranden S, DeRycke R, Botterman J, Sybesma C, Van Montagu M & Inze D, EMBO, 10 (1991) 1723.

    CAS  Google Scholar 

  6. Klesig DF & Malamy J, Plant Mol Biol, 26 (1994) 1439.

    Article  Google Scholar 

  7. Narwal Sneh, Balasubrahmanyam A, Lodha ML & Kapoor HC, Indian J Biochem Biophys, 38 (2001) 342.

    Google Scholar 

  8. Benzie IFF & Strain JJ, Methods Enzymol, 209 (1999) 15.

    Article  Google Scholar 

  9. Beauchamp CH & Fridovich I, Anal Biochem, 44 (1971) 276.

    Article  PubMed  CAS  Google Scholar 

  10. Zeislin N & Zaken RB, Plant Growth Regulation, 11 (1992) 53.

    Article  Google Scholar 

  11. Teranishi Y, Tanaka A, Osumi M & Fukui S, Agril and Biochem, 38 (1974) 1213.

    CAS  Google Scholar 

  12. Yalpani N, Silverman P, Wilson TMA, Kleier DA & Raskin I, Plant Cell, 3 (1991) 809.

    PubMed  CAS  Google Scholar 

  13. Narwal Sneh, Balasubrahmanyam A, Sadhna P, Kapoor HC & Lodha ML, Indian J Expt Biol, 39 (2001) 600.

    Google Scholar 

  14. Gholizadeh A, Kumar M, Balasubrahmanyam A, Sharma S, Narwal S, Lodha ML & Kapoor HC, J Plant Biochem Biotechnol, 13 (2004) 13.

    Article  CAS  Google Scholar 

  15. Karel M, Tannenhaum SR, Wallace DH & Maloney H, J Food Sci, 31 (1996) 892.

    Article  Google Scholar 

  16. Ebel J & Casio EG, Int Rev Cytol, 148 (1994) 1.

    Article  CAS  Google Scholar 

  17. Smirnoff N, Ann Bot, 78 (1996) 661.

    Article  CAS  Google Scholar 

  18. Chen ZX, Silva H & Klesig DF, Science, 262 (1993) 1883.

    Article  PubMed  CAS  Google Scholar 

  19. Adam AL, Bestwick CS, Barna B & Mansfield JW, Planta, 191 (1995) 240.

    Google Scholar 

  20. Apostol I, Heinstein PF & Low PS, Plant Physiol, 90 (1989) 109.

    Article  PubMed  CAS  Google Scholar 

  21. Legrand M, Fritig B & Hirth L, Phytochemistry, 15 (1976) 1353.

    Article  CAS  Google Scholar 

  22. Neuenschwander V, Vernoolj B, Friedrich L, Uknes S, Kessmann H & Ryals J, Plant J, 8 (1995) 227.

    Article  CAS  Google Scholar 

  23. Clarke SE, Guy PL, Burritt DJ & Jameson PE, Physiol. Plant, 114 (2002) 157.

    Article  PubMed  CAS  Google Scholar 

  24. Desikan R, Reynolds A, Hancock J & Neil S, Biochem J, 330 (1998) 115.

    PubMed  CAS  Google Scholar 

  25. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP & Ryals JA, Plant Cell, 3 (1991) 1085.

    PubMed  CAS  Google Scholar 

  26. Heil M & Bostock RM, Ann Bot, 89 (2002) 503.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lodha.

Additional information

Part of Ph.D. thesis submitted to Post-Graduate School, IARI, New Delhi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, S., Kapoor, H.C. & Lodha, M.L. Modification of Antioxidant Status of Host Cell in Response to Bougainvillea Antiviral Proteins. J. Plant Biochem. Biotechnol. 13, 113–118 (2004). https://doi.org/10.1007/BF03263204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263204

Key words

Navigation