Skip to main content
Log in

Pharmacokinetics of Monoclonal Antibodies

Implications for Their Use in Cancer Therapy

  • Review Article
  • Research Perspective
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Antibody-targeted therapy of cancer has significantly improved the selective delivery of antitumour agents, either directly or indirectly, but major problems still remain in the form of poor tumour localisation, toxicity to normal tissues and immunogenicity of either the antibody itself or the targeted therapeutic moiety. Modern technology has created engineered antibodies, with the desired characteristics of high selectivity, affinity, avidity and penetration, which promise a way of reducing these problems, while advances in radiobiology have widened the choice of suitable radioisotopes. However, it is becoming evident that efficient therapy will generally require either enhancement of the therapeutic effect, such as the amplification seen with antibody-directed enzyme prodrug therapy (ADEPT) and the multiphase targeting systems, or a combination of different moieties.

The abnormal tumour vasculature creates hypoxia, making cells resistant to therapy, and this was previously seen as a disadvantage to antibody delivery and treatment. However, new combined treatments are now allowing it to be exploited for therapeutic gain. This destruction of the tumour vasculature has the potential to kill many more cells than direct targeting to the tumour cells themselves, so enhancing the treatment. Another form of combined treatment is the use of antibody cocktails which can address tumour heterogeneity by targeting several different antigens. These advances are permitting the development of novel antibody therapies that can be custom designed for the pharmacokinetics required, and should significantly enhance the successes already being reported in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chester KA, Hawkins RE. Advances in antibody technology for targeted cancer therapy. Tumour Marker Update 1994; 6: 187–95

    Google Scholar 

  2. Mach J-P, Carrel S, Merenda C, et al. In vivo localisation of radiolabelled antibodies to carcinoembryonic antigen in human colon carcinoma grafted into nude mice. Nature 1974; 248: 704–6

    Article  PubMed  CAS  Google Scholar 

  3. Jain RK. Transport of molecules in the tumour interstitium: a review. Cancer Res 1987; 47: 3039–51

    PubMed  CAS  Google Scholar 

  4. Yuan F, Baxter LT, Jain RK. Pharmacokinetic analysis of two-step approaches using bifunctional and enzyme-conjugated antibodies. Cancer Res 1991; 51: 3119–30

    PubMed  CAS  Google Scholar 

  5. Pedley RB, Begent RHJ, Boden JA, et al. Relationship between tumour size and uptake of radiolabelled anti-CEA antibody in a colon tumour xenograft. Eur J Nucl Med 1987; 13: 197–202

    Article  PubMed  CAS  Google Scholar 

  6. Sedlacek H-H, Seemann G, Hoffmann D, et al., editors. Antibodies as carriers of cytotoxicity. Basel: Karger, 1992

    Google Scholar 

  7. Dillman RO. Antibodies as cytotoxic therapy. J Clin Oncol 1994; 12: 1497–515

    PubMed  CAS  Google Scholar 

  8. Hale G, Dyer MJS, Clark MR, et al. Remission induction in non-Hodgkin’s lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 1988; II: 1394–9

    Article  Google Scholar 

  9. Riethmuller G, Schneider-Gadicke E, Schlimok G, et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. Lancet 1994; 343: 1177–83

    Article  PubMed  CAS  Google Scholar 

  10. Ragnhammar P, Fagerberg J, Frodin J-E, et al. Effect of monoclonal antibody 17-1A and GM-CSF in patients with advanced colorectal carcinoma — long-lasting, complete remissions can be induced. Int J Cancer 1993; 53: 751–8

    Article  PubMed  CAS  Google Scholar 

  11. Begent RHJ. Targeted therapies: cell surface targets. In: Ponder B, Waring MJ, editors. The science of cancer treatment (cancer biology and medicine) vol 2. Dordrecht: Kluwer Academic Publications, 1990: 161–84

    Chapter  Google Scholar 

  12. Herlyn D, Wettendorff M, Schmoll E, et al. Anti-idiotype immunization of cancer patients: modulation of the immune response. Proc Natl Acad Sci USA 1987; 84: 8055–9

    Article  PubMed  CAS  Google Scholar 

  13. Durrant LG, Buckley D, Denton GWL, et al. Enhanced cell mediated tumour killing in patients immunised with human monoclonal anti-idiotype antibody. Cancer Res 1994; 54: 4837–40

    PubMed  CAS  Google Scholar 

  14. Mittelman A, Chen ZY, Yang H, et al. Human high molecular weight melanoma-associated antigen (HMW-MAA) mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: induction of humoral anti-HMW-MAA immunity and prolongation of survival in patients with stage IV melanoma. Proc Natl Acad Sci USA 1992; 89: 466–70

    Article  PubMed  CAS  Google Scholar 

  15. Buchsbaum DJ, Langmuir VK, Wessels BW. Experimental radioimmunotherapy. Med Phys 1993; 20 Pt 2: 551–67

    Article  PubMed  CAS  Google Scholar 

  16. Reilly RM. Radioimmunotherapy of malignancies. Clin Pharm 1991; 10: 359–75

    PubMed  CAS  Google Scholar 

  17. Sharkey RM, Pykett MJ, Siegel JA, et al. Radioimmunotherapy of the GW-39 human colonic tumour xenograft with 131I-labeled murine monoclonal antibody to carcinoembryonic antigen. Cancer Res 1987; 47: 5672–7

    PubMed  CAS  Google Scholar 

  18. Buchegger F, Vacca F, Carrel S, et al. Radioimmunotherapy of human colon carcinoma by 131I labeled monoclonal anti-CEA antibodies in the nude mouse model. Int J Cancer 1988; 41: 127–34

    Article  PubMed  CAS  Google Scholar 

  19. Pedley RB, Boden JA, Boden R, et al. Comparative radioimmunotherapy using intact or F(ab′)2 fragments of 131I anti-CEA antibody in a colonic xenograft model. Br J Cancer 1993; 68: 69–73

    Article  PubMed  CAS  Google Scholar 

  20. Jurcic JG, Scheinberg DA. Recent developments in the radioimmunotherapy of cancer. Curr Opin Immunol 1994; 6: 715–21

    Article  PubMed  CAS  Google Scholar 

  21. Lane DM, Eagle KF, Begent RHJ, et al. Radioimmunotherapy of metastatic colorectal tumours with iodine-131-labelled antibody to carcinoembryonic antigen: phase I/II study with comparative biodistribution of intact and F(ab′)2 antibodies. Br J Cancer 1994; 70: 521–5

    Article  PubMed  CAS  Google Scholar 

  22. Kaminski MS, Zasadny KR, Francis IR, et al. Radioimmunotherapy of B-cell lymphoma with 131I anti-B1 (anti-CD20) antibody. N Engl J Med 1993; 329: 459–65

    Article  PubMed  CAS  Google Scholar 

  23. Press OW, Eary JF, Appelbaum FR, et al. Radiolabelled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993; 329: 1219–22

    Article  PubMed  CAS  Google Scholar 

  24. Beaumier PL, Venkatesan P, Vanderheyden J-L, et al. 186Re radioimmunotherapy of small cell lung carcinoma xenografts in nude mice. Cancer Res 1991; 51: 676–81

    PubMed  CAS  Google Scholar 

  25. Gerretsen M, Visser GWM, Walsum M, et al. 186Re-labeled monoclonal antibody E48 immunoglobulin G-mediated therapy of human head and neck squamous cell carcinoma xenografts. Cancer Res 1993; 53: 3524–9

    PubMed  CAS  Google Scholar 

  26. Smith A, Alberto R, Blaeuenstein P et al. Preclinical evaluation of 67Cu-labeled intact and fragmented anti-colon carcinoma monoclonal antibody MAb35. Cancer Res 1993; 53: 5727–33

    PubMed  CAS  Google Scholar 

  27. DeNardo GL, DeNardo SJ, Meares CF, et al. Pharmacokinetics of copper-67 conjugated Lym-1, a potent therapeutic radioimmunoconjugate, in mice and in patients with lymphoma. Antibody Immunoconjug Radiopharm 1991; 4: 777–85

    CAS  Google Scholar 

  28. King DJ, Turner A, Farnsworth APH, et al. Improved tumour targeting with chemically cross-linked recombinant antibody fragments. Cancer Res 1994; 54: 6176–85

    PubMed  CAS  Google Scholar 

  29. Turner A, King DJ, Farnsworth APH, et al. Comparative biodistribution of indium-Ill-labelled macrocycle chimeric B72.3 antibody in tumour-bearing mice. Br J Cancer 1994; 70: 35–41

    Article  PubMed  CAS  Google Scholar 

  30. Woo DV, Li D, Mattis JA, et al. Selective chromosomal damage and cytotoxicity of 125I-labeled monoclonal antibody 17-1A in human cancer cells. Cancer Res 1989; 49: 2952–8

    PubMed  CAS  Google Scholar 

  31. Harrison A, Royle L. Efficacy of astatine-211-labeled monoclonal antibody in treatment of murine T-cell lymphoma. Natl Cancer Inst Monogr 1987; 3: 157–8

    Google Scholar 

  32. Zalutsky MR, McLendon RE, Garg PK, et al. Radioimmunotherapy of neoplastic meningitis in rats using an α-particleemitting immunoconjugate. Cancer Res 1994; 54: 4719–25

    PubMed  CAS  Google Scholar 

  33. Huneke RB, Pippin CG, Squire RA, et al. Effective α-particlemediated radioimmunotherapy of murine leukemia. Cancer Res 1992; 52: 5818–20

    PubMed  CAS  Google Scholar 

  34. Hartmann F, Horak EM, Garmestani K, et al. Radioimmunotherapy of nude mice bearing a human interleukin 2 receptor α-expressing lymphoma utilising the α-emitting radionuclideconjugated monoclonal antibody 212Bi-anti-Tac. Cancer Res 1994; 54: 4362–70

    PubMed  CAS  Google Scholar 

  35. Zalutsky MR. Antibody-mediated radiotherapy: future prospects. In: Zalutzky MR, editor. Antibodies in radiodiagnostics and therapy. Boca Raton (FL): CRC Press, 1989

    Google Scholar 

  36. Blumenthal RD, Sharkey RM, Haywood L, et al. Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 131I-labeled monoclonal antibodies. Cancer Res 1992; 52: 6036–44

    PubMed  CAS  Google Scholar 

  37. O’Dwyer PJ, Mojzisik CM, Hinkle G, et al. Intraoperative probe-directed radio-immunodetection using a monoclonal antibody. Arch Surg 1986; 121: 1391–4

    Article  PubMed  Google Scholar 

  38. Theodorou NA. Radioimmunoguided surgery for colorectal cancer. Proceedings of the Tufton Trust Conference on New Antibody Technology and the Emergence of Useful Cancer Therapy; 1994 Oct 10–11: London. London: Royal Society of Medicine, 1995: 51–2

    Google Scholar 

  39. Paganelli G, Stella M, De Nardi P, et al. A new method for faster blood clearance in radioimmuno-guided surgery. J Nucl Med Allied Sci 1990; 35: 88–9

    Google Scholar 

  40. Paganelli G, Belloni C, Magnani P, et al. Two-step tumour targeting in ovarian cancer patients using biotinylated monoclonal antibodies and radioactive streptavidin. Eur J Nucl Med 1992; 19: 322–9

    Article  PubMed  CAS  Google Scholar 

  41. Bamias A, Bowles MJ, Krausz T, et al. Intravesical administration of indium111-labelled HMFG2 monoclonal antibody in superficial bladder carcinomas. Int J Cancer 1993; 54: 899–903

    Article  PubMed  CAS  Google Scholar 

  42. Roeske JC, Chen TY, Brill AB. Dosimetry of intraperitoneally administered radiolabelled antibodies. Med Phys 1993; 20 Pt 2: 593–600

    Article  PubMed  CAS  Google Scholar 

  43. Britton KE. Overview of radioimmunotherapy: a European perspective. Antibody Immunoconjug Radiopharm 1991; 4 Pt 2: 133–50

    Google Scholar 

  44. Hird V, Maraveyas A, Snook D, et al. Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody. Br J Cancer 1993; 68: 403–6

    Article  PubMed  CAS  Google Scholar 

  45. Pedley RB, Begent RHJ, Boden JA, et al. The effect of radiosensitizers on radioimmunotherapy, using 131I-labelled anti-CEA antibodies in a human colonic xenograft model. Int J Cancer 1991; 47: 597–602

    Article  PubMed  CAS  Google Scholar 

  46. Langmuir VK, Mendonca HL. The combined use of 131I-labeled antibody and the hypoxic cytotoxin SR 4233 in vitro and in vivo. Radiat Res 1992; 132: 351–8

    Article  PubMed  CAS  Google Scholar 

  47. Ghetie M-A, Vitetta ES. Recent developments in immunotoxin therapy. Curr Opin Immunol 1994; 6: 707–14

    Article  PubMed  CAS  Google Scholar 

  48. Amlot PL, Stone MJ, Cunningham D, et al. A phase I study of an anti-CD22 deglycosylated ricin A chain immunotoxin in the treatment of B cell lymphomas resistant to conventional therapy. Blood 1993; 82: 2624–33

    PubMed  CAS  Google Scholar 

  49. Vitetta ES, Thorpe PE, Uhr JW. Immunotoxins: magic bullets or misguided missiles. Immunol Today 1993; 14: 252–9

    Article  PubMed  CAS  Google Scholar 

  50. Zangemeisterwittke U, Collinson AR, Fisch I, et al. Anti-tumour activity of a blocked ricin immunotoxin with specificity against the cluster-5a antigen associated with human small-cell lung cancer. Int J Cancer 1993; 54: 1028–35

    Article  CAS  Google Scholar 

  51. Kreitman RJ, Hansen HJ, Jones AL, et al. Pseudomonas exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab′ induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res 1993; 53: 819–25

    PubMed  CAS  Google Scholar 

  52. Debinski W, Pastan I. Monovalent immunotoxin containing truncated form of Pseudomonas exotoxin as potent antitumor agent. Cancer Res 1992; 52: 5379–85

    PubMed  CAS  Google Scholar 

  53. Siegall CB, Chace D, Mixan B, et al. In vitro and in vivo characterization of BF96 sFv-PE40. J Immunol 1994; 152: 2377–84

    PubMed  CAS  Google Scholar 

  54. Koppel GA. Recent advances with monoclonal antibody drug targeting for the treatment of human cancer. Bioconjug Chem 1990; 1: 13–21

    Article  PubMed  CAS  Google Scholar 

  55. Hinman LM, Hamann PR, Wallace R, et al. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumour antibiotics. Cancer Res 1993; 53: 3336–42

    PubMed  CAS  Google Scholar 

  56. Shih LB, Xuan H, Sharkey RM, et al. A fluouridine-anti-CEA immunoconjugate is therapeutically effective in a human colonic cancer xenograft model. Int J Cancer 1990; 46: 1101–6

    Article  PubMed  CAS  Google Scholar 

  57. Huennekens FM. Tumour targeting: activation of prodrugs by enzyme monoclonal antibody conjugates. Trends Biotechnol 1994; 12: 234–9

    Article  PubMed  CAS  Google Scholar 

  58. Begent RHJ, Pedley RB. Monoclonal antibody administration: current clinical pharmacokinetic status and future trends. Clin Pharmacokinet 1992; 23 Pt 2: 85–9

    Article  PubMed  CAS  Google Scholar 

  59. Buchegger F, Pelegrin A, Delaloye B, et al. Iodine-131-labeled MAb F(ab′)2 fragments are more efficient and less toxic than intact CEA antibodies in radioimmunotherapy of large human colon carcinoma grafted in nude mice. J Nucl Med 1990; 31: 1035–44

    PubMed  CAS  Google Scholar 

  60. Schott ME, Frazier KA, Pollock DK, et al. Preparation, characterization, and in vivo biodistribution properties of synthetically cross-linked multivalent antitumour antibody fragments. Bioconjug Chem 1993; 4: 153–65

    Article  PubMed  CAS  Google Scholar 

  61. Pedley RB, Boden JA, Boden R, et al. The potential for enhanced tumour localisation by poly(ethylene glycol) modification of anti-CEA antibody. Br J Cancer 1994; 70: 1126–30

    Article  PubMed  CAS  Google Scholar 

  62. Kitamura K, Takahashi TK, Yamaguchi T, et al. Chemical engineering of the monoclonal antibody A7 by polyethylene glycol for targeting cancer therapy. Cancer Res 1991; 51: 4310–5

    PubMed  CAS  Google Scholar 

  63. Delgardo C, Pedley RB, Herraez A, et al. Enhanced tumour specificity of an anti-carcinoembryonic antigen Fab′ fragment by poly(ethylene glycol) (PEG)-modification. Br J Cancer 1996; 73: 175–82

    Article  Google Scholar 

  64. Marshall D, Pedley RB, Boden JA, et al. Polyethylene glycol modification of a galactosylated streptavidin clearing agent: effects on immunogenicity and clearance of a biotinylated anti-tumour antibody. Br J Cancer 1996; 73: 565–72

    Article  PubMed  CAS  Google Scholar 

  65. McCafferty J, Griffiths J, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348: 552–4

    Article  PubMed  CAS  Google Scholar 

  66. Chester KA, Begent RHJ, Robson L, et al. Phage libraries for the generation of clinically useful antibodies. Lancet 1994; 343: 455–6

    Article  PubMed  CAS  Google Scholar 

  67. Yokata T, Milenik DE, Whitlow M, et al. Rapid tumour penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52: 3402–8

    Google Scholar 

  68. Savage P, So A, Spooner RA, et al. A recombinant single-chain Fv antibody interleukin-2 fusion protein. Br J Cancer 1993; 67: 304–10

    Article  PubMed  CAS  Google Scholar 

  69. Michael NP, Chester KA, Melton RG, et al. In vitro and in vivo characterisation of a recombinant carboxypeptidase G2-anti-CEA scFv fusion protein. Immunotechnology 1996; 2: 47–57

    Article  PubMed  CAS  Google Scholar 

  70. Begent RHJ, Bagshawe KD, Green AJ, et al. Liposomally entrapped second antibody improves tumour imaging with radiolabelled (first) antitumour antibody. Lancet 1982; II: 739–42

    Article  Google Scholar 

  71. Begent RHJ, Bagshawe KD, Pedley RB, et al. Use of second antibody in radioimmunotherapy. Natl Cancer Inst Monogr 1987; 3: 59–61

    Google Scholar 

  72. Goldenberg DM, Sharkey RM, Ford E. Anti-antibody enhancement of iodine-131 anti-CEA radioimmunodetection in experimental and clinical studies. J Nucl Med 1987; 28: 1604–10

    PubMed  CAS  Google Scholar 

  73. Pedley RB, Dale R, Boden JA, et al. The effect of second antibody clearance on the distribution and dosimetry of radiolabelled anti-CEA antibody in a human colonic tumour xenograft model. Int J Cancer 1989; 43: 713–18

    Article  PubMed  CAS  Google Scholar 

  74. Marshall D, Pedley RB, Boden JA, et al. Clearance of circulating radio-antibodies using streptavidin or second antibodies in a xenograft model. Br J Cancer 1994; 69: 502–7

    Article  PubMed  CAS  Google Scholar 

  75. Marshall D, Pedley RB, Melton RG, et al. Galactosylated streptavidin for improved clearance of biotinylated intact and F(ab′)2 fragments of an antitumour antibody. Br J Cancer 1995; 71: 18–24

    Article  PubMed  CAS  Google Scholar 

  76. Paganelli G, Magnani P, Zito F, et al. Three-step monoclonal antibody tumour targeting in carcinoembryonic antigen-positive patients. Cancer Res 1991; 51: 5960–6

    PubMed  CAS  Google Scholar 

  77. Khawli LA, Alauddin MM, Miller GK, et al. Improved immunotargeting of tumors with biotinylated monoclonal antibodies and radiolabelled streptavidin. Antibody Immunoconjug Radiopharm 1993; 6: 13–27

    CAS  Google Scholar 

  78. Saga T, Weinstein JN, Jeong JM, et al. Two-step targeting of experimental lung metastases with biotinylated antibody and radiolabelled streptavidin. Cancer Res 1994; 54: 2160–5

    PubMed  CAS  Google Scholar 

  79. Bagshawe KD. Antibody directed enzymes revive anti-cancer prodrugs concept. Br J Cancer 1987; 56: 531–2

    Article  PubMed  CAS  Google Scholar 

  80. Senter PD, Wallace PM, Svensson HP, et al. Generation of cytotoxic agents by targeted enzymes. Bioconjug Chem 1993; 4: 3–9

    Article  PubMed  CAS  Google Scholar 

  81. Deonarain MP, Epenetos AA. Targeting enzymes for cancer therapy: old enzymes in new roles. Br J Cancer 1994; 70: 786–94

    Article  PubMed  CAS  Google Scholar 

  82. Springer CJ, Niculescu-Duvaz I, Mauger AB, et al. The design of prodrugs for antibody-directed enzyme therapy (ADEPT). Proceedings of the Tufton Trust Conference on New Antibody Technology and the Emergence of Useful Cancer Therapy; 1994 Oct 10–11: London. London: Royal Society, of Medicine, 1995: 75–7

    Google Scholar 

  83. Bagshawe KD. Antibody-directed enzyme prodrug therapy: a review. Drug Dev Res 1995; 34: 220–30

    Article  CAS  Google Scholar 

  84. Springer CJ, Poon GK, Sharma SK, et al. Analysis of antibody-enzyme conjugate clearance by investigation of prodrug and active drug in an ADEPT clinical study. Cell Biophys 1994; 24/25: 193–207

    CAS  Google Scholar 

  85. Sharma SK, Bagshawe KD, Springer CJ, et al. Antibody-directed enzyme prodrug therapy (ADEPT): a three phase system. Dis Markers 1991; 9: 225–31

    PubMed  CAS  Google Scholar 

  86. Bagshawe KD, Sharma SK, Springer CJ, et al. Antibody-directed prodrug therapy (ADEPT): a pilot scale clinical therapy. Tumor Targeting 1995; 1: 17–29

    Google Scholar 

  87. Le Doussal JM, Gruaz-Guyon A, Martin M, et al. Targetting of indium-111-labelled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: imaging of tumours hosted in nude mice. Cancer Res 1990; 50: 3445–52

    PubMed  Google Scholar 

  88. Pimm MV, Robins RA, Embleton MJ, et al. A bispecific monoclonal antibody against methotrexate and a human tumour associated antigen augments cytotoxicity of methotrexatecarrier conjugate. Br J Cancer 1990; 61: 508–13

    Article  PubMed  CAS  Google Scholar 

  89. Renner C, Jung W, Sahin U, et al. Cure of xenografted human tumours by bispecific monoclonal antibodies and human T-cells. Science 1994; 264: 833–5

    Article  PubMed  CAS  Google Scholar 

  90. Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T-cells. Nature 1985; 314: 628–31

    Article  PubMed  CAS  Google Scholar 

  91. Kalofonos H, Rowlinson G, Epenetos AA. Enhancement of monoclonal antibody uptake in human colon tumour xenografts following irradiation. Cancer Res 1990; 50: 159–63

    PubMed  CAS  Google Scholar 

  92. Order SE, Klein JL, Leichner PK, et al. Radiolabelled antibody in the treatment of primary and metastatic liver malignancies. Recent Res Cancer Res 1986; 100: 307–12

    Article  CAS  Google Scholar 

  93. Folli S, Pelegrin A, Chalandon Y, et al. Tumour-necrosis factor can enhance radio-antibody uptake in human colon carcinoma xenografts by increasing vascular permeability. Int J Cancer 1993: 53: 829–36

    Article  PubMed  CAS  Google Scholar 

  94. Rowlinson-Busza G, Maraveyas A, Epenetos AA. Effect of tumour necrosis factor on the uptake of specific and control monoclonal antibodies in a human tumour xenograft model. Br J Cancer 1995; 71: 660–5

    Article  PubMed  CAS  Google Scholar 

  95. Russell SM, Krauer KG, McKenzie IFC, et al. Effect of tumour necrosis factor on the antitumour efficacy and toxicity of aminopterin-monoclonal antibody conjugates: parameters for optimization of therapy. Cancer Res 1990; 50: 6028–33

    PubMed  CAS  Google Scholar 

  96. Smyth MJ, Pieterz A, McKenzie IFC. Increased antitumour effect of immunoconjugates and tumour necrosis factor. Cancer Res 1988; 48: 3607–12

    PubMed  CAS  Google Scholar 

  97. Melton RG, Rowland JA, Pietersz GA, et al. Tumour necrosis factor increases tumour uptake of co-administered antibodycarboxypeptidase G2 conjugate. Eur J Cancer 1993; 29A: 1177–83

    Article  PubMed  CAS  Google Scholar 

  98. Khawli LA, Miller GK, Epstein AL. Effect of seven new vasoactive immunoconjugates on the enhancement of monoclonal antibody uptake in tumours. Cancer 1994; 73: 824–31

    Article  PubMed  CAS  Google Scholar 

  99. Zwi LJ, Baguley BC, Gavin JB, et al. The morphological effects of the antitumour agents flavone acetic acid and 5,6-dimethyl xanthenone acetic acid on the colon 38 mouse tumour. Pathology 1994; 26: 161–9

    Article  PubMed  CAS  Google Scholar 

  100. Ching L–M, Joseph WR, Crosier KE, et al. Induction of tumour necrosis factor-α messenger RNA in human and murine cells by the flavone acetic acid analogue 5,6-dimethylxanthenone-4-acetic acid (NCS 640488). Cancer Res 1994; 54: 870–2

    PubMed  CAS  Google Scholar 

  101. Pedley RB, Begent RHJ, Boden JA, et al. Enhancement of radioimmunotherapy by drugs modifying tumour blood flow in a colonic xenograft model. Int J Cancer 1994; 57: 830–5

    Article  PubMed  CAS  Google Scholar 

  102. Pedley RB, Boden JA, Boden R, et al. Ablation of colorectal xenografts with combined radioimmunotherapy and tumour blood flow modifying agents. Cancer Res 1996; in press

    Google Scholar 

  103. Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 1993; 53: 4727–35

    PubMed  CAS  Google Scholar 

  104. Kim KJ, Li B, Winer J. Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–4

    Article  PubMed  CAS  Google Scholar 

  105. Burrows FJ, Thorpe PE. Eradication of large solid tumours in mice with an immunotoxin directed against tumour vasculature. Proc Natl Acad Sci USA 1993; 90: 8996–9000

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedley, R.B. Pharmacokinetics of Monoclonal Antibodies. Clin. Immunother. 6, 54–67 (1996). https://doi.org/10.1007/BF03259352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259352

Keywords

Navigation