Skip to main content
Log in

Status of Bispecific Monoclonal Antibodies for Cancer Therapy

  • Review Article
  • Research Perspective
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Native monoclonal antibodies (mAbs) have met with only limited success as therapeutic tools in the experimental treatment of human cancers. Therefore, alternative approaches for the therapeutic exploitation of the unique potential of mAbs to specifically target a tumour cell have been sought. One promising approach is bispecific mAbs, which have the capacity to bind to 2 different antigens and bring them into close proximity. If one arm of a bispecific mAb is directed against a tumour-associated antigen and the other against a cytotoxic agent such as a radionuclide, cytotoxic drug or cytotoxic effector cell, specific antitumour toxicity can be generated at the tumour site which will eventually lead to a specific tumour cell kill.

Bispecific mAbs binding to a trigger molecule on cytotoxic effector cells, for example natural killer cells or T lymphocytes, are able both to target and to activate these cells specifically at the tumour site. T lymphocytes triggered by a combination of 2 appropriate bispecific mAbs, which bind to a tumour-associated antigen and to the CD3 or CD28 antigen, respectively, might be the most potent tools for efficient activation of resting T lymphocytes and direction of their cytolytic activity against tumour cells.

Phase I/II trials for the clinical evaluation of bispecific mAbs are under way. The preliminary results indicate that anticancer bispecific mAbs will meet the therapeutic expectations once attributed to native mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Köhler G, Milstein C. Continuous culture of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–7

    Article  PubMed  Google Scholar 

  2. Reisfeld RA. Monoclonal antibodies in cancer immunotherapy. Clin Lab Med 1992; 12: 201–16

    PubMed  CAS  Google Scholar 

  3. Lovett DR, Scheinberg DA, Houghton AN. Monoclonal antibody therapy for cancer. Cancer Chemother Biol Response Modif 1991; 12: 147–63

    PubMed  CAS  Google Scholar 

  4. Grossbard ML, Press OW, Applebaum FR, et al. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood 1992; 80: 863–7

    PubMed  CAS  Google Scholar 

  5. Riethmueller G, Schneider-Gadicke E, Schlimok G, et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’s C colorectal carcinoma. German Cancer Aid 17-1A Study Group. Lancet 1994; 343: 1177–83

    Article  Google Scholar 

  6. Engert A, Burrows F, Jung W, et al. Evaluation of ricin A-chain containing immunotoxins directed against the CD30 antigen as potential reagents for the treatment of Hodgkin’s disease. Cancer Res 1992; 50: 82–9

    Google Scholar 

  7. Dykes PW, Bradwell AR, Chapman CE, et al. Radio-immunotherapy of cancer. Clinical studies and limiting factors. Cancer Treat Rev 1987; 14: 87–106

    Article  PubMed  CAS  Google Scholar 

  8. Sahin U, Hartmann F, Senter P, et al. Specific activation of the prodrug mitomycin-phosphate by a bispecific anti-CD30/anti-alkaline phosphatase monoclonal antibody. Cancer Res 1990; 50: 6944–8

    PubMed  CAS  Google Scholar 

  9. Milstein C, Cuello AC. Hybrid hybridomas and their use in immunohistochemistry. Nature 1983; 305: 537–40

    Article  PubMed  CAS  Google Scholar 

  10. Somasundaram C, Matzku S, Schuhmacher J, et al. Development of a bispecific monoclonal antibody against a gallium-67 chelate and the human melanoma-associated antigen p97 for potential use in pretargeted immunoscintigraphy. Cancer Immunol Immunother 1993; 36: 337–45

    Article  PubMed  CAS  Google Scholar 

  11. Le Doussal JM, Gruaz-Guyon A, Martin M, et al. Targeting of indium 111-labelled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: imaging of tumors hosted in nude mice. Cancer Res 1990; 50: 3445–50

    PubMed  Google Scholar 

  12. Hombach A, Jung W, Pohl C, et al. A CD16/CD30 bispecific antibody induces lysis of Hodgkin cells by unstimulated Natural Killer cells in vitro and in vivo. Int J Cancer 1993; 55: 830–7

    Article  PubMed  CAS  Google Scholar 

  13. Pohl C, Denfeld R, Renner C, et al. CD30 antigen specific targeting and activation of T cells via murine bispecific monoclonal antibodies against CD3 and CD28: potential use for the treatment of Hodgkin’s lymphoma. Int J Cancer 1993; 54: 820–7

    Article  PubMed  CAS  Google Scholar 

  14. Ferrini S, Prigone I, Miotti S, et al. Bispecific monoclonal antibodies directed to CD16 and to a tumor-associated antigen induce target cell lysis by resting NK cells and a subset of NK clones. Int J Cancer 1991; 48: 227–33

    Article  PubMed  CAS  Google Scholar 

  15. Raso V, Griffin T. Hybrid antibody with dual specificity for the delivery of ricin to immunoglobulin bearing target cells. Cancer Res 1981; 41: 2073–8

    PubMed  CAS  Google Scholar 

  16. Shalaby MR, Shepard HM, Presta L, et al. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 proto-oncogene. J Exp Med 1992; 175: 217–25

    Article  PubMed  CAS  Google Scholar 

  17. Kostelny SA, Cole MS, Tso JY. Formation of a bispecific antibody by the use of leucine zippers. J Immunol 1992; 148: 1547–53

    PubMed  CAS  Google Scholar 

  18. Holliger P, Prospero T, Winter G. Diabodies: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 1993; 90: 6444–8

    Article  PubMed  CAS  Google Scholar 

  19. Stevenson FK, George JA, Glennie MJ. Anti-idiotypic therapy of leukemias and lymphomas. Chem Immunol 1990; 48: 126–31

    Article  PubMed  CAS  Google Scholar 

  20. Link BK, Weiner GJ. Production and characterization of a bispecific IgG capable of inducing T-cell-mediated lysis of malignant B cells. Blood 1994; 81: 3343–9

    Google Scholar 

  21. Siegall CB. Targeted toxins as anticancer agents. Cancer 1994; 74 Suppl.: 1006–12

    Article  PubMed  CAS  Google Scholar 

  22. Lippman ME. The development of biological therapies for breast cancer. Science 1993; 259: 631–2

    Article  PubMed  CAS  Google Scholar 

  23. Mendelsohn J. The epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. Semin Cancer Biol 1990; 1: 339–44

    PubMed  CAS  Google Scholar 

  24. Paik S, Burkhard E, Lippman ME. Clinical significance of erb-B2 protein overexpression. Cancer Treat Res 1992; 61: 181–91

    Article  PubMed  CAS  Google Scholar 

  25. Bruynck A, Seemann G, Bosslet K. Characterisation of a humanised bispecific monoclonal antibody for cancer therapy. Br J Cancer 1993; 67: 436–40

    Article  PubMed  CAS  Google Scholar 

  26. Senter PD, Saulnier MG, Schreiber GJ, et al. Anti-tumor effects of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proc Natl Acad Sci USA 1988; 85: 4842–6

    Article  PubMed  CAS  Google Scholar 

  27. Corvalan JRF, Smith W. Construction and characterisation of a hybrid-hybrid monoclonal antibody recognizing both carcinoembryonic antigen (CEA) and vinca alkaloids. Cancer Immunol Immunother 1987; 24: 127–33

    PubMed  CAS  Google Scholar 

  28. Morelli D, Sardini A, Villa E, et al. Modulation of drug-induced cytotoxicity by a bispecific monoclonal antibody that recognizes the epidermal growth factor receptor and doxorubicin. Cancer Immunol Immunother 1994; 38: 171–7

    PubMed  CAS  Google Scholar 

  29. French RR, Hamblin TJ, Bell AJ, et al. Treatment of B-cell lymphoma with combination of bispecific antibodies and saporin. Lancet 1995; 346: 223–4

    Article  PubMed  CAS  Google Scholar 

  30. Ferrini S, Cambiaggi A, Cantoni C, et al. Targeting of T or NK lymphocytes against tumor cells by bispecific monoclonal antibodies: role of different triggering molecules. Int J Cancer 1992; 7 Suppl.: 15–8

    CAS  Google Scholar 

  31. Meuer SC, Hussey RE, Fabbi M, et al. An alternative pathway of T-cell activation: a functional role for the 50KD T11 sheep erythrocyte receptor. Cell 1984; 36: 397–400

    Article  Google Scholar 

  32. Clark MR, Waldmann H. T-cell killing of target cells induced by hybrid antibodies: comparison of two monoclonal antibodies. J Natl Cancer Inst 1987; 79: 1393–401

    PubMed  CAS  Google Scholar 

  33. Fanger MW, Shen L, Graziano RF, et al. Cytotoxicity mediated by human Fc receptors for IgG. Immunol Today 1989; 10: 92–7

    Article  PubMed  CAS  Google Scholar 

  34. Unkeless JC, Scigliano E, Freedman VH. Structure and function of human and murine receptors for IgG. Annu Rev Immunol 1988; 6: 251–8

    Article  PubMed  CAS  Google Scholar 

  35. Freedman AS, Freeman JG, Horowitz J, et al. B7, a B-cell restricted antigen that identifies preactivated B-cells. J Immunol 1986; 139: 3260–6

    Google Scholar 

  36. Huizinga TW, van der Schoot CE, Jos C, et al. The PI-linked receptor for FcRIII is released on stimulation of neutrophils. Nature 1988; 333: 667–9

    Article  PubMed  CAS  Google Scholar 

  37. Selvaraj P, Rosse WF, Silber R, et al. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 1988; 333: 565–8

    Article  PubMed  CAS  Google Scholar 

  38. Lanier LL, Yu G, Philipps JH. Co-association of CD3ζ with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 1989; 342: 803–5

    Article  PubMed  CAS  Google Scholar 

  39. Liao F, Shin HS, Rhee SG. Cross-linking of FcγRIIIA on natural killer cells results in tyrosine phosphorylation of PLC-γ1 and PLC-γ2. J Immunol 1993; 150(7): 2668–74

    PubMed  CAS  Google Scholar 

  40. Moretta A, Ciccone E, Pantaleo G, et al. Surface molecules involved on the activation and regulation of T or natural killer lymphocytes in humans. Immunol Rev 1989; 111: 145–75

    Article  PubMed  CAS  Google Scholar 

  41. Anegon I, Cuturi MC, Trinchieri G, et al. Interaction of Fc receptor (CD16) with ligands induces transcription of IL-2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med 1988; 167: 452–62

    Article  PubMed  CAS  Google Scholar 

  42. Ferrini S, Miescher S, Zocchi MR, et al. Phenotypic and functional characterization of recombinant interleukin 2 (rIL2)-induced activated killer cells: analysis at the population and clonal level. J Immunol 1987; 138: 1297–301

    PubMed  CAS  Google Scholar 

  43. Titus JA, Perez P, Kaubisch A, et al. Human K/natural killer cells targeted with hetero-cross-linked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo. J Immunol 1987; 139: 3153–8

    PubMed  CAS  Google Scholar 

  44. Diehl V, von Kalle C, Fonatsch C, et al. The cell of origin in Hodgkin’s disease. Semin Oncol 1990; 17: 660–72

    PubMed  CAS  Google Scholar 

  45. Dürkop H, Latza U, Hummel M, et al. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 1992; 68: 421–7

    Article  PubMed  Google Scholar 

  46. Garcia de Palazzo I, Holmes M, Gercel-Taylor C, et al. Antitumor effects of a bispecific antibody targeting CA19-9 antigen and CD16. Cancer Res 1992; 52: 5713–20

    PubMed  CAS  Google Scholar 

  47. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–9

    Article  PubMed  CAS  Google Scholar 

  48. Morganelli PM, Kitzmiller TJ, Hemmer R, et al. Redirected targeting of LDL to human monocyte Fcγ receptors with bispecific antibodies. Arterioscler Thromb 1992; 12: 1131–7

    Article  PubMed  CAS  Google Scholar 

  49. Wallace PK, Howell AL, Fanger MW. Role of Fcγ receptors in cancer and infectious disease. J Leukoc Biol 1994; 55: 816–26

    PubMed  CAS  Google Scholar 

  50. Lin CH, Shen Z, Boros P, et al. Fc receptor-mediated signal transduction. J Clin Immunol 1994; 14: 1–13

    Article  PubMed  CAS  Google Scholar 

  51. Perussia B, Dayton ET, Lazarus R, et al. Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells. J Exp Med 1983; 158: 1092–101

    Article  PubMed  CAS  Google Scholar 

  52. Petroni KC, Shen L, Guyre PM, et al. Modulation of human polymorphonuclear leucocyte IgG Fc receptors and Fc receptor-mediated functions by IFNγ and glucocorticoids. J Imunol 1988; 140: 3467–74

    CAS  Google Scholar 

  53. Kerst JM, van de Winkel JGJ, Evans AH, et al. Granulocyte colony-stimulating factor induces hFcγRI (CD64 antigen) positive neutrophils via an effect on myeloid precursor cells. Blood 1993; 73: 1457–64

    Google Scholar 

  54. Ball ED, Guyre PM, Mills L, et al. Initial trial of bispecific antibody-mediated immunotherapy of CD15 bearing tumors: cytotoxicity of human tumor cells using a bispecific antibody comprised of anti-CD15 (MoAb PM81) and anti-CD64/FcγR1 (MoAb 32). J Hematother 1992; 1: 85–95

    Article  PubMed  CAS  Google Scholar 

  55. June CH, Ledbetter JA, Linsley P, et al. Role of the CD28 receptor in T-cell activation. Immunol Today 1990; 11: 211–6

    Article  PubMed  CAS  Google Scholar 

  56. Baskar S, Ostrand-Rosenberg S, Nabavi N, et al. Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated major histocompatibility complex class II molecules. Proc Natl Acad Sci USA 1993; 90: 5687–90

    Article  PubMed  CAS  Google Scholar 

  57. Freeman GJ, Borriello F, Hodes RJ, et al. Uncovering of functional alternative CTLA44-4 counter-receptor in B7-deficient mice. Science 1993; 262: 907–9

    Article  PubMed  CAS  Google Scholar 

  58. Kroesen BJ, ter Haar A, Spakman H, et al. Local antitumor treatment in carcinoma patients with bispecific-monoclonal-antibody redirected T cells. Cancer Immunol Immunother 1993; 37: 400–7

    Article  PubMed  CAS  Google Scholar 

  59. Flens MJ, Mulder WMC, Bril H, et al. Efficient expansion of tumor-infiltrating lymphocytes from solid tumors by stimulation with combined CD3 and CD28 monoclonal antibodies. Cancer Immunol Immunother 1993; 37: 323–8

    Article  PubMed  CAS  Google Scholar 

  60. Nijhuis EWP, Wiel van Kemenade E, Figdor CG, et al. Activation and expansion of tumour-infiltrating lymphocytes by anti-CD3 and anti-CD28 monoclonal antibodies. Cancer Immunol Immunother 1990; 32: 245–50

    Article  PubMed  CAS  Google Scholar 

  61. Demanet C, Brissinck J, Leo O, et al. Role of T-cell subsets in the bispecific antibody (anti-idiotype × anti-CD3) treatment of the BCL1 lymphoma. Cancer Res 1994; 54: 2973–8

    PubMed  CAS  Google Scholar 

  62. Bolhuis RLH, Lamers CHJ, Goey SH, et al. Adoptive immunotherapy of ovarian carcinoma with BS-mAb-targeted lymphocytes: a multicenter study. Int J Cancer 1992; 7 Suppl.: 78–81

    CAS  Google Scholar 

  63. Nitta T, Sato K, Yagita H, et al. Preliminary trial targeting therapy against malignant glioma. Lancet 1990; 335: 368–71

    Article  PubMed  CAS  Google Scholar 

  64. Rosenberg SA, Lotze MT, Muul LM, et al. Observation on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 316: 1485–92

    Article  Google Scholar 

  65. Rosenberg SA. The immunotherapy and gene therapy of cancer. J Clin Oncol 1992; 10: 180–99

    PubMed  CAS  Google Scholar 

  66. Azuma M, Ito D, Yagita H, et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 1993; 366: 77–9

    Article  Google Scholar 

  67. Chen L, Ashe S, Brady WA, et al. Costimulation of anti-tumor immunity by the B7 counterreceptor for the T lymphocytes molecules CD28 and CTLA-4. Cell 1992; 71: 1093–102

    Article  PubMed  CAS  Google Scholar 

  68. Navabi N, Freeman GJ, Gault A, et al. Signalling through the MHC class II cytoplasmic domain is required for antigen presentation and induces B7 expression. Nature 1992; 360: 266–8

    Article  Google Scholar 

  69. Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993; 177: 925–35

    Article  PubMed  CAS  Google Scholar 

  70. Harding FA, McArthur JG, Gross HA, et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992; 356: 607–9

    Article  PubMed  CAS  Google Scholar 

  71. Fraser JD, Weiss A. Regulation of T-cell lymphokine gene transcription by the accessory molecule CD28. Mol Cell Biol 1992; 12: 4357–63

    PubMed  CAS  Google Scholar 

  72. Thompson CB, Lindsten T, Ledbetter JA, et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA 1989; 86: 1333–7

    Article  PubMed  CAS  Google Scholar 

  73. Williams TM, Moolten DM, Makni H, et al. CD28-stimulated IL-2 gene expression in Jurkat T cells occurs in part transcriptionally and is cyclosporine-A sensitive. J Immunol 1992; 148: 2609–16

    PubMed  CAS  Google Scholar 

  74. Jung G, Ledbetter JA, Müller-Eberhard HJ. Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates. Proc Natl Acad Sci USA 1987; 84: 4611–5

    Article  PubMed  CAS  Google Scholar 

  75. Möller SA, Reisfeld RA. Bispecific-monoclonal-antibody-directed lysis of ovarian carcinoma cells by activated human T lymphocytes. Cancer Immunol Immunother 1991; 33: 210–6

    Article  PubMed  Google Scholar 

  76. Bohlen H, Hopff T, Manzke O, et al. Lysis of malignant B cells from patients with B-chronic lymphocytic leukemia by autologous T cells activated with CD3×CD19 bispecific antibodies in combination with bivalent CD28 antibodies. Blood 82; 6: 1803–12

  77. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993; 259: 368–70

    Article  PubMed  CAS  Google Scholar 

  78. Renner C, Jung W, Sahin U, et al. Cure of xenografted human tumors by bispecific monoclonal antibodies and human T cells. Science 1994; 264: 833–5

    Article  PubMed  CAS  Google Scholar 

  79. Miller RA, Oserdoff AR, Stratte PT, et al. Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma. Blood 1983; 62: 988–95

    PubMed  CAS  Google Scholar 

  80. Chamow SM, Zhang DZ, Tan XY, et al. A humanized bispecific immunoadhesion-antibody that retargets CD3+ effectors to kill HIV-1-infected cells. J Immunol 1994; 153: 4268–80

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, C., Pfreundschuh, M. Status of Bispecific Monoclonal Antibodies for Cancer Therapy. Clin Immunother 5, 30–39 (1996). https://doi.org/10.1007/BF03259313

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259313

Keywords

Navigation