Skip to main content
Log in

The Acute Phase Response in the Pathogenesis of Inflammatory Disease

Prospects For Pharmacotherapy

  • Review Article
  • Immunological Basis of Disease
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Trauma and many diseases are followed or accompanied by a sequence of cellular and molecular reparative reactions known as the acute phase response. The early, or local, part of the acute phase response is initiated by release of proinflammatory cytokines at site(s) of tissue injury and cell necrosis, and is amplified by the formation of chemotactic peptides (chemokines) that cause leucocyte infiltration. The late, systemic, part of the acute phase response is characterised by a second wave of cytokine production that initiates cellular and cytokine cascades that temporarily alter metabolism in nearly all organ systems of the body. If tissue injury and cell necrosis are massive or recurrent, chronic inflammation ensues, with self-propagating tissue remodelling and fibrosis.

Knowledge of the acute phase response can be applied to pharmacotherapy in various ways: (a) anticytokine strategies can be applied to diseases with either acute or chronic inflammatory components to ameliorate the disease process; (b) interpretation of standard clinical measurements, such as plasma lipid concentrations as indicators of coronary artery disease, is subject to the confounding influences of early and late acute phase reactants; and (c) acute phase reactants can be used as surrogate markers of proinflammatory cytokines in clinical monitoring of disease therapy.

Treatment of diseases with a chronic inflammatory component, such as arthritis, can be expected to require different intervention strategies from those with an acute inflammatory component, such as sepsis and septic shock. However, characterisation of cells and cytokines at each stage of either acute or chronic inflammation will be necessary for adequate definition of intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leibovich SJ, Ross R. The role of the macrophage in wound repair: a study with hydrocortisone and antimacrophage serum. Am J Pathol 1975; 78: 71–91

    PubMed  CAS  Google Scholar 

  2. Sipe JD, Rosenstreich DL. Serum factors associated with inflammation. In: Oppenheim JJ, Rosenstreich DL, Potter M, editors. Cellular function in immunity and inflammation. New York: Elsevier/North-Holland, 1981: 411–29

    Google Scholar 

  3. Baumann H, Gauldie J. The acute phase response. Immunol Today 1994; 15: 74–80

    Article  PubMed  CAS  Google Scholar 

  4. Dinarello CA, Gelfand JA, Wolff SM. Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. JAMA 1993; 269: 1829–35

    Article  PubMed  CAS  Google Scholar 

  5. Bernard C, Tedgui A. Cytokine network and the vessel wall. Insights into septic shock pathogenesis. Eur Cytokine Netw 1992; 3: 19–33

    PubMed  CAS  Google Scholar 

  6. Volanakis JE. Acute phase proteins. In: McCarty DJ, Koopman WJ, editors. Arthritis and allied conditions: a textbook of rheumatology. Philadelphia: Lea & Febiger, 1993: 469–77

    Google Scholar 

  7. Kushner I, Mackiewicz A. Acute phase response: an overview. In: Mackiewicz A, Kushner I, Baumann H, editors. Acute phase proteins: molecular biology, biochemistry, clinical applications. Boca Raton: CRC Press, 1993: 3–19

    Google Scholar 

  8. Sipe JD. The molecular biology of interleukin 1 and the acute phase response. Adv Intern Med 1989; 34: 1–20

    PubMed  CAS  Google Scholar 

  9. Sipe JD, Martel-Pelletier J, Otterness IG, et al. Cytokine reduction in treatment of joint conditions. Mediators Inflamm 1994; 3: 243–56

    Article  PubMed  CAS  Google Scholar 

  10. Carswell EA, Old LJ, Kasse R, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72: 3666–70

    Article  PubMed  CAS  Google Scholar 

  11. Aggarwal BB. Tumor necrosis factors — TNF alpha and TNF beta: their structure and pleiotropic biological effects. Drugs Future 1987; 12: 891–8

    Google Scholar 

  12. Beutler B, Cerami A. Tumor necrosis, cachexia, shock and chronic inflammation. Annu Rev Biochem 1988; 57: 505–18

    Article  PubMed  CAS  Google Scholar 

  13. Field M, Chu C, Feldman M, et al. Interleukin-6 localization in the synovial membrane in rheumatoid arthritis. Rheumatol Int 1991; 11: 45–50

    Article  PubMed  CAS  Google Scholar 

  14. Vilcek J, Lee TH. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem 1991; 266: 7313–6

    PubMed  CAS  Google Scholar 

  15. Bonta IL, Ben-Efraim S, Mozes T, et al. Tumor necrosis factor in inflammation: relation to other mediators and to macrophage antitumour defence. Pharmacol Res 1991; 24: 115–30

    Article  PubMed  CAS  Google Scholar 

  16. Tracey KJ, Cerami A. Tumor necrosis factor and regulation of metabolism in infection: role of systemic versus tissue levels. Proc Soc Exp Biol Med 1992; 200: 233–9

    PubMed  CAS  Google Scholar 

  17. Loetscher H, Pan Y-C, Lahm H-W, et al. Molecular cloning and expression of human 55KDa tumor necrosis factor receptor. Cell 1990; 61: 351–9

    Article  PubMed  CAS  Google Scholar 

  18. Smith CA, Davis T, Anderson D, et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 1990; 248: 1019–23

    Article  PubMed  CAS  Google Scholar 

  19. Kronke M, Schutze S, Scheurich P, et al. TNF signal transduction and TNF-responsive genes. In: Aggarwal BB, Vilcek J, editors. Tumor necrosis factor: structure, function and mechanism of action. New York: Marcel Dekker, 1991: 189–216

    Google Scholar 

  20. Rothe M, Goeddel DV. TNF receptor signal transduction. J Cell Biochem 1994; 18B: 313

    Google Scholar 

  21. Han J, Brown T, Beutler B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med 1990; 171: 465–75

    Article  PubMed  CAS  Google Scholar 

  22. Perez C, Albert I, DeFay K, et al. A non-secretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 1990; 63: 251–8

    Article  PubMed  CAS  Google Scholar 

  23. Brouckaert P, Libert C, Everaerdt B, et al. Tumor necrosis factor, its receptors and the connection with interleukin 1 and interleukin 6. Immunobiology 1993; 187: 317–29

    Article  PubMed  CAS  Google Scholar 

  24. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–52

    PubMed  CAS  Google Scholar 

  25. Dinarello CA. Anti-cytokine strategies. In: Ghezzi P, Mantovani A, editors. Pathology and pharmacology of cytokines. Augusta (GA): Biomedical Press, 1992: 159–66

    Google Scholar 

  26. Fenton MJ. Transcriptional factors that regulate human IL-1/hemopoietin 1 gene expression. Hematopoiesis 1990; 120: 67–82

    CAS  Google Scholar 

  27. Fenton MJ. Transcriptional and post-transcriptional regulation of interleukin 1 gene expression. Int J Immunopharmacol 1992; 14: 401–11

    Article  PubMed  CAS  Google Scholar 

  28. Beuscher HU, Rausch U-P, Otterness IG, et al. Transition from interleukin 1 beta (IL-1beta) to IL-1 alpha production during maturation of inflammatory macrophages in vivo. J Exp Med 1992; 175: 1793–7

    Article  PubMed  CAS  Google Scholar 

  29. Collata F, Re F, Bertini R, et al. Interleukin type II receptor: a decoy target for IL-1 that is regulated by interleukin 4. Science 1993; 261: 472–5

    Article  Google Scholar 

  30. Engelmann H, Holtmann H, Brakebusch C, et al. Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity. J Biol Chem 1990; 265: 14497–504

    PubMed  CAS  Google Scholar 

  31. Arend WP, Dayer J-M. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum 1990; 33: 305–15

    Article  PubMed  CAS  Google Scholar 

  32. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–52

    PubMed  CAS  Google Scholar 

  33. Le J, Vilcek J. Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab Invest 1989; 61: 588–602

    PubMed  CAS  Google Scholar 

  34. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990; 265: 621–36

    PubMed  CAS  Google Scholar 

  35. Rose-John S, Heinrich PC. Interleukin-6 receptor. In: Mackiewicz A, Kushner I, Baumann H, editors. Acute phase proteins molecular biology, biochemistry, clinical applications. Boca Raton: CRC Press, 1993: 343–61

    Google Scholar 

  36. Gearing DP, Comeau MR, Friend DJ, et al. The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 1992; 255: 1434–6

    Article  PubMed  CAS  Google Scholar 

  37. Ip NY, Yancopoulos GD. Ciliary neurotrophic factor and its receptor complex. Prog Growth Factor Res 1992; 4: 139–55

    Article  PubMed  CAS  Google Scholar 

  38. Novick D, Engelmann H, Wallach D, et al. Soluble cytokine receptors are present in normal human urine. J Exp Med 1989; 170: 1409–14

    Article  PubMed  CAS  Google Scholar 

  39. May LT, Vignet H, Kenney JS, et al. High levels of ‘complexed’ interleukin-6 in human blood. J Biol Chem 1992; 267: 19698–704

    PubMed  CAS  Google Scholar 

  40. Mackiewicz A, Kushner I, Baumann H. Acute phase proteins: molecular biology, biochemistry, clinical applications. Boca Raton: CRC Press, 1993: 3–686

    Google Scholar 

  41. Ganapathi MK, Schultz D, Mackiewicz A, et al. Heterogenous nature of the acute phase response. Differential regulation of human serum amyloid A, C-reactive protein, and other acute phase proteins by cytokines in Hep 3B cells. J Immunol 1988; 141: 564–9

    PubMed  CAS  Google Scholar 

  42. Otterness IG. The value of C-reactive protein measurement in rheumatoid arthritis. Semin Arthritis Rheum 1994; 24: 91–104

    Article  PubMed  CAS  Google Scholar 

  43. Rokita H, Loose LD, Bartle LM, et al. Synergism of interleukin 1 and interleukin 6 induces serum amyloid A (SAA) production while depressing fibrinogen: a quantitative analysis. J Rheumatol 1994; 21: 400–5

    PubMed  CAS  Google Scholar 

  44. Husby G, Marhaug G, Dowton B, et al. Serum amyloid A (SAA): biochemistry, genetics and the pathogenesis of AA amyloidosis. Amyloid Int J Exp Clin Invest 1994; 1: 119–37

    CAS  Google Scholar 

  45. Mohler KM, Sleath PR, Fitzner JN, et al. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 1994; 370: 218–20

    Article  PubMed  CAS  Google Scholar 

  46. Gearing AJH, Becket P, Christodoulou M, et al. Processing of tumour necrosis factor-α precursor by metalloproteinases. Nature 1994; 370: 555–7

    Article  PubMed  CAS  Google Scholar 

  47. McGeehan GM, Becherer JD, Bast Jr RC, et al. Regulation of tumour necrosis factor-α processing by a metalloproteinase inhibitor. Nature 1994; 370: 558–61

    Article  PubMed  CAS  Google Scholar 

  48. Sioud M, Drlica K. Prevention of human immunodeficiency virus type I integrase expression in Escherichia coli by a ribozyme. Proc Natl Acad Sci USA 1991; 88: 7303–7

    Article  PubMed  CAS  Google Scholar 

  49. Sioud M, Natvig JB, Forre O. A preformed ribozyme destroys cytokine mRNA in human cells. Arthritis Rheum 1993; 36: S267

    Google Scholar 

  50. Alzani R, Corti A, Grazioli L, et al. Suramin induces deoligomerization of human tumor necrosis factor alpha. J Biol Chem 1993; 268: 12526–9

    PubMed  CAS  Google Scholar 

  51. Grazioli L, Alzani R, Ciomei M, et al. Inhibitory effect of suramin on receptor binding and cytotoxic activity of tumor necrosis factor alpha. Int J Immunopharmacol 1992; 14: 637–42

    Article  PubMed  CAS  Google Scholar 

  52. Elliott MJ, Maini RN, Feldmann M, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 1993; 36: 1681–90

    Article  PubMed  CAS  Google Scholar 

  53. Engelmann H, Aderka D, Rubinstein M, et al. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J Biol Chem 1989; 264: 11974–80

    PubMed  CAS  Google Scholar 

  54. Engelmann H, Novick D, Wallach D. Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J Biol Chem 1990; 265: 1531–6

    PubMed  CAS  Google Scholar 

  55. Seckinger P, Zhang JH, Hauptmann B, et al. Characterization of a TNF-alpha inhibitor. Evidence of immunological cross-reactivity with the TNF receptor. Proc Natl Acad Sci USA 1990; 87: 5188–92

    Article  PubMed  CAS  Google Scholar 

  56. Cope AP, Aderka D, Doherty M. Increased levels of soluble tumor necrosis factor receptors in the sera and synovial fluid of patients with rheumatic diseases. Arthritis Rheum 1992; 35: 1160–9

    Article  PubMed  CAS  Google Scholar 

  57. Dinarello CA, Thompson RC. Blocking IL-1: IL-1 receptor antagonist in vivo and in vitro. Immunol Today 1991; 12: 404–10

    Article  PubMed  CAS  Google Scholar 

  58. Lebsack ME, Paul CC, Bloedow DC, et al. Subcutaneous IL-1 receptor antagonist in patients with rheumatoid arthritis. Arthritis Rheum 1991; 34: S45

    Google Scholar 

  59. Bandara G, Mueller GM, Galea JT, et al. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc Natl Acad Sci USA 1993; 90: 10764–8

    Article  PubMed  CAS  Google Scholar 

  60. Symons JA, Eastgate JA, Duff GW. Purification and characterization of a novel soluble receptor for interleukin-1. J Exp Med 1991; 174: 1251–4

    Article  PubMed  CAS  Google Scholar 

  61. Fanslow WC, Sims JE, Sassenfeld H, et al. Regulation of alloreactivity in vivo by a soluble form of the interleukin-1 receptor. Science 1990; 248: 739–42

    Article  PubMed  CAS  Google Scholar 

  62. Dubois CM, Ruscetti FW, Palaszynski EW, et al. Transforming growth factor beta is a potent inhibitor of interleukin-1 (IL-1) receptor expression: proposed mechanism of inhibition of IL-1 action. J Exp Med 1990; 172: 737–42

    Article  PubMed  CAS  Google Scholar 

  63. Wickstrom D, editor. Prospects for antisense nucleic acid therapy of cancer and AIDS. New York: Wiley-Liss, 1991: 1–267

    Google Scholar 

  64. Maier JAM, Voulalas P, Roeder D, et al. Extension of the life span of human endothelial cells by an interleukin-1 alpha anti-sense oligomer. Science 1990; 249: 1570–4

    Article  PubMed  CAS  Google Scholar 

  65. Budker VG, Knorre DG, Vlassov VV. Cell membranes as barriers for antisense oligonucleotides. Antisense Res Dev 1992; 2: 177–84

    PubMed  CAS  Google Scholar 

  66. Wilson KP, Black JAF, Thomson JA, et al. Structure and mechanism of interleukin-1β converting enzyme. Nature 1994; 370: 270–5

    Article  PubMed  CAS  Google Scholar 

  67. McConkey B, Crockson RA, Crockson AP. The assessment of rheumatoid arthritis: a study based on measurements of serum acute phase reactants. Q J Med 1972; 41: 115–25

    PubMed  CAS  Google Scholar 

  68. McConkey B, Crockson RA, Crockson AP, et al. The effects of some anti-inflammatory drugs on the acute-phase proteins in rheumatoid arthritis. Q J Med 1973; 42: 785–91

    PubMed  CAS  Google Scholar 

  69. Larsen A. The relation of radiographic changes to serum acute-phase proteins and rheumatoid factor in 200 patients with rheumatoid arthritis. Scand J Rheumatol 1988; 17: 123–9

    Article  PubMed  CAS  Google Scholar 

  70. Chambers RE, Macfarlane DG, Whicher JT, et al. Serum amyloid-A protein concentration in rheumatoid arthritis and its role in monitoring disease activity. Ann Rheum Dis 1983; 42: 665–7

    Article  PubMed  CAS  Google Scholar 

  71. Sukenik S, Henkin J, Zimlichman S, et al. Serum and synovial fluid levels of serum amyloid A protein and C-reactive protein in inflammatory and noninflammatory arthritis. J Rheumatol 1988; 15: 942–5

    PubMed  CAS  Google Scholar 

  72. Loose LD, Sipe JD, Kirby DS, et al. Reduction in APPs with tenidap, a cytokine modulating antirheumatic drug. Br J Rheumatol 1993; 32 Suppl. 3: 19–25

    Article  PubMed  Google Scholar 

  73. Bausserman LL. SAA kinetics in animals. In: Marrink J, van Rijswijk MH, editors. Amyloidosis. Dordrecht: Martinus Nijhoff, 1986: 337–40

    Chapter  Google Scholar 

  74. Kushner I. C-reactive protein and the acute-phase response. Hosp Pract 1990; 25: 13–28

    CAS  Google Scholar 

  75. Sipe JD, Rokita H, de Beer FC. Cytokine regulation of the mouse SAA gene family. In: Mackiewicz A, Kushner I, Baumann H, editors. Acute phase proteins: molecular biology, biochemistry, clinical applications. Boca Raton: CRC Press, 1993: 511–26

    Google Scholar 

  76. Reed JI, Sipe JD, Wohlgethan JR, et al. Response of the acute phase reactants, C-reactive protein and serum amyloid A protein to antibiotic treatment of Whipple’s disease. Arthritis Rheum 1985; 28: 352–5

    Article  PubMed  CAS  Google Scholar 

  77. Kushner I, Mackiewicz A. Acute phase proteins as disease markers. Dis Markers 1987; 5: 1–11

    PubMed  CAS  Google Scholar 

  78. Benditt EP, Eriksen N, Meek RL. Serum amyloid A protein. Methods Enzymol 1988; 163: 510–23

    Article  PubMed  CAS  Google Scholar 

  79. Loose LD, Littman BH, Sipe JD. Inhibition of acute phase proteins by tenidap. Clin Res 1990; 38: A579

    Google Scholar 

  80. Pepys MB. C-reactive protein 50 years on. Lancet 1981; i: 653–7

    Article  Google Scholar 

  81. Amos RS, Constable TJ, Crockson RA, et al. Rheumatoid arthritis: relation of serum C-reactive protein and erythrocyte sedimentation rates to radiographic changes. BMJ 1977; 1: 195–7

    Article  PubMed  CAS  Google Scholar 

  82. Mallya R, de Beer FC, Berry H, et al. Correlation of clinical parameters of disease activity in rheumatoid arthritis with serum concentration of C-reactive protein and erythrocyte sedimentation rate. J Rheumatol 1982; 9: 224–8

    PubMed  CAS  Google Scholar 

  83. Dixon JS, Bird HA, Sitton NG, et al. C-reactive protein in the serial assessment of disease activity in rheumatoid arthritis. Scand J Rheumatol 1984; 13: 39–44

    Article  PubMed  CAS  Google Scholar 

  84. Dawes PT, Fowler PD, Clarke S, et al. Rheumatoid arthritis: treatment which controls the C-reactive protein and erythrocyte sedimentation rate. Br J Rheumatol 1986; 25: 44–9

    Article  PubMed  CAS  Google Scholar 

  85. van Leeuwen MA, van Rijswijk MH, van der Heijde DMFM, et al. The acute-phase response in relation to radiographic progression in early rheumatoid arthritis: a prospective study during the first 3 years of the disease. Br J Rheumatol 1993; 32: 9–13

    Article  PubMed  Google Scholar 

  86. Chambers RE, Macfarlane DG, Whicher JT, et al. Serum amyloid A protein concentration in rheumatoid arthritis and its role in monitoring disease activity. Ann Rheum Dis 1983; 42: 665–7

    Article  PubMed  CAS  Google Scholar 

  87. Grindulis KA, Scott DA, Robinison MW, et al. Serum amyloid A protein during the treatment of rheumatoid arthritis with second-line drugs. Br J Rheumatol 1985; 24: 158–63

    Article  PubMed  CAS  Google Scholar 

  88. Chambers RE, Hutton CW, Dieppe PA, et al. Comparative study in C-reactive protein and serum amyloid A protein in experimental inflammation. Ann Rheum Dis 1991; 50: 677–9

    Article  PubMed  CAS  Google Scholar 

  89. Grunfeld C, Feingold KR. Tumor necrosis factor, interleukin, and interferon induced changes in lipid metabolism as part of host defense. Proc Soc Exp Biol Med 1992; 200: 224–7

    PubMed  CAS  Google Scholar 

  90. Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med 1994; 331: 417–24

    Article  PubMed  CAS  Google Scholar 

  91. Coetzee GA, Strachan AF, van der Westhuyzen DR, et al. Serum amyloid A-containing human high density lipoprotein 3. J Biol Chem 1986; 261: 9644–51

    PubMed  CAS  Google Scholar 

  92. Clifton PMM, Barter BJ. Effects of serum amyloid A protein (SAA) on composition, size, and density of high density lipoproteins in subjects with myocardial infarction. J Lipid Res 1985; 26: 1389–98

    PubMed  CAS  Google Scholar 

  93. Eriksen N, Benditt EP. Trauma, high density lipoproteins and serum amyloid protein A. Clin Chim Acta 1984; 140: 139–49

    Article  PubMed  CAS  Google Scholar 

  94. Hama SY, Navab M, De Beer FC, et al. The acute-phase high density lipoprotein does not prevent, but amplifies the modification of low density lipoprotein and the resulting monocyte transmigration into the subendothelium of cocultures of human aortic wall cells [abstract]. Circulation 1992; 86 Suppl. I: 1423

    Google Scholar 

  95. de Beer FC, Navab M. High density lipoprotein function during active rheumatoid arthritis. Arthritis Rheum 1993; 36: S129

    Google Scholar 

  96. Liang J-S, Sipe JD. Recombinant human serum amyloid A (ApoSAAp) binds cholesterol and modulates cholesterol flux. J Lipid Res 1995; 36: 37–46

    PubMed  CAS  Google Scholar 

  97. Badolato R, Ming JM, Murphy WJ, et al. Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med 1994; 180: 203–9

    Article  PubMed  CAS  Google Scholar 

  98. Raynaud J-P, Wolfe F, Sibley JT, et al. Mortality by cardiovascular disease and use of corticosteroids in rheumatoid arthritis. Arthritis Rheum 1993; 36: S193

    Google Scholar 

  99. Lakatos J, Harsagyi A. Serum total, HDL, LDL, cholesterol and triglyceride levels in patients with rheumatoid arthritis. Clin Biochem 1988; 21: 93–6

    Article  PubMed  CAS  Google Scholar 

  100. Monson RR, Hall AR. Mortality among arthritics. J Chronic Dis 1976; 29: 459–67

    Article  PubMed  CAS  Google Scholar 

  101. Koota K, Isomaki H, Mutru O. Death rate and causes of death in RA patients during a period of five years. Scand J Rheumatol 1977; 6: 241–4

    Article  PubMed  CAS  Google Scholar 

  102. Gollaher CJ, Bausserman LL. Hepatic catabolism of serum amyloid A during an acute phase response and chronic inflammation. Proc Soc Exp Biol Med 1990; 194: 245–50

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipe, J.D. The Acute Phase Response in the Pathogenesis of Inflammatory Disease. Clin. Immunother. 3, 297–307 (1995). https://doi.org/10.1007/BF03259281

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259281

Keywords

Navigation