Skip to main content
Log in

Interleukin-12

Clinical Potential in Infectious Diseases, AIDS and Cancer

  • Leading Article
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Interleukin (IL)-12 is a heterodimeric cytokine produced by phagocytic cells, T cells and other antigen-presenting cells, mostly in response to bacteria, bacterial products and intracellular parasites. IL-12 is active on T cells and natural killer cells, inducing production of cytokines, proliferation and enhancement of cytotoxic activity. Early during infections, IL-12 production induces interferon-γ (IFNγ), which in turn activates phagocytic cells and enhances their bacteriological activity. IL-12 and IFNγ also direct the development of T helper type 1 (TH1) cells, which produce interleukin-2 and IFNγ and activate cell-mediated resistance mechanisms against many pathogens.

In several experimental models of infection, treatment with recombinant IL-12 has been shown to increase the immune resistance against infection. IL-12 is also an effective adjuvant in vaccines, favouring the development of protective TH1 memory responses. The ability of IL-12 to enhance the cellular immune response also makes it an effective agent for boosting the immune resistance against tumours. Thus, IL-12 has clinical potential as a therapeutic agent in infectious diseases and cancer. The immunopotentiating activity of IL-12, and the fact that cells from HIV-positive patients have a decreased ability to produce this cytokine, suggest the possible clinical use of IL-12 in AIDS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 1989; 170: 827–46

    Article  PubMed  CAS  Google Scholar 

  2. Stern AS, Podlaski FJ, Hulmes JD, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci USA 1990; 87: 6808–12

    Article  PubMed  CAS  Google Scholar 

  3. Wolf S, Seiburth D, Perussia B, et al. Cell sources of natural killer cell stimulatory factor (NKSF/IL-12) transcripts and subunit expression. FASEB J 1992; 6: A1335

    Google Scholar 

  4. Gubler U, Chua AO, Schoenhaut DS, et al. Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci USA 1991; 88: 4143–7

    Article  PubMed  CAS  Google Scholar 

  5. Schoenhaut DS, Chua AO, Wolitzky AG, et al. Cloning and expression of murine IL-12. J Immunol 1992; 148: 3433–40

    PubMed  CAS  Google Scholar 

  6. Sieburth D, Jabs EW, Warrington JA, et al. Assignment of genes encoding a unique cytokine (IL12) composed of two unrelated subunits to chromosomes 3 and 5. Genomics 1992; 14: 59–62

    Article  PubMed  CAS  Google Scholar 

  7. D’Andrea A, Rengaraju M, Valiante NM, et al. Production of natural killer cell stimulatory factor (NKSF/IL-12) by peripheral blood mononuclear cells. J Exp Med 1992; 176: 1387–98

    Article  PubMed  Google Scholar 

  8. Mattner F, Fischer S, Guckes S, et al. The interleukin-12 subunit p40 specifically inhibits effects of the interleukin-12 heterodimer. Eur J Immunol 1993; 23: 2202–8

    Article  PubMed  CAS  Google Scholar 

  9. Chizzonite R, Truitt T, Desai BB, et al. IL-12 receptor. I: characterization of the receptor on PHA-activated human lymphoblasts. J Immunol 1992; 148: 3117–24

    PubMed  CAS  Google Scholar 

  10. Desai BB, Quinn PM, Wolitzky AG, et al. The IL-12 receptor. II: distribution and regulation of receptor expression. J Immunol 1992; 148: 3125–32

    PubMed  CAS  Google Scholar 

  11. Chua AO, Chizzonite R, Desai BB, et al. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J Immunol 1994; 153: 128–36

    PubMed  CAS  Google Scholar 

  12. Jacobsen SE, Veiby OP, Smeland EB. Cytotoxic lymphocyte maturation factor (interleukin 12) is a synergistic growth factor for hematopoietic stem cells. J Exp Med 1993; 178: 413–8

    Article  PubMed  CAS  Google Scholar 

  13. Ploemacher RE, van Soest PL, Voorwinden H, et al. Interleukin-12 synergizes with interleukin-3 and Steel factor to enhance recovery of murine hemopoietic stem cells in liquid culture. Leukemia 1993; 7: 1381–8

    PubMed  CAS  Google Scholar 

  14. Bellone G, Trinchieri G. Dual stimulatory and inhibitory effect of NK cell stimulatory factor/IL-12 on human hematopoiesis. J Immunol 1994; 153: 930–7

    PubMed  CAS  Google Scholar 

  15. Godfrey DI, Kennedy J, Gately MK, et al. IL-12 influences intrathymic T cell development. J Immunol 1994; 152: 2729–35

    PubMed  CAS  Google Scholar 

  16. Chan SH, Perussia B, Gupta JW, et al. Induction of IFN-γ production by NK cell stimulatory factor (NKSF): characterization of the responder cells and synergy with other inducers. J Exp Med 1991; 173: 869–79

    Article  PubMed  CAS  Google Scholar 

  17. Kubin M, Kamoun M, Trinchieri G. Interleukin-12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med 1994; 180: 211–22

    Article  PubMed  CAS  Google Scholar 

  18. Chan SH, Kobayashi M, Santoli D, et al. Mechanisms of IFN-γ induction by natural killer cell stimulatory factor (NKSF/IL-12): role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2. J Immunol 1992; 148: 92–8

    PubMed  CAS  Google Scholar 

  19. Wysocka M, Kubin M, Vieira L, et al. Interleukin-12 is required for interferon-γ production and lethality in lps-induced shock in mice. Eur J Immunol. In press

  20. Gazzinelli RT, Wysocka M, Hayashi S, et al. Parasite induced IL-12 stimulates early IFN-γ synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 1994; 153: 2533–43

    PubMed  CAS  Google Scholar 

  21. Tripp CS, Wolf SF, Unanue ER. Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci USA 1993; 90: 3725–9

    Article  PubMed  CAS  Google Scholar 

  22. Gazzinelli RT, Hieny S, Wynn TA, et al. Interleukin-12 is required for the T-lymphocyte independent induction of interferon-γ by an intracellular parasite and induces resistance in T-deficient hosts. Proc Natl Acad Sci USA 1993; 90: 6115–9

    Article  PubMed  CAS  Google Scholar 

  23. Perussia B, Chan S, D’Andrea A, et al. Natural killer cell stimulatory factor or IL-12 has differential effects on the proliferation of TCRαβ+,TCRγδ+ T lymphocytes and NK cells. J Immunol 1992; 149: 3495–502

    PubMed  CAS  Google Scholar 

  24. Gately MK, Desai BB, Wolitzky AG, et al. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J Immunol 1991; 147: 874–82

    PubMed  CAS  Google Scholar 

  25. Murphy EE, Terres G, Macatonia SE, et al. B7 and IL-12 cooperate for proliferation and IFN-γ production by mouse T helper clones that are unresponsive to B7 costimulation. J Exp Med 1994; 180: 223–31

    Article  PubMed  CAS  Google Scholar 

  26. Gately MK, Wolitzky AG, Quinn PM, et al. Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol 1992; 143: 127–42

    Article  PubMed  CAS  Google Scholar 

  27. Chehimi J, Starr S, Frank I, et al. Natural killer cell stimulatory factor (NKSF) increases the cytotoxic activity of NK cells from both healthy donors and HIV-infected patients. J Exp Med 1992; 175: 789–96

    Article  PubMed  CAS  Google Scholar 

  28. Chehimi J, Valiante NM, D’Andrea A, et al. Enhancing effect of natural killer cell stimulatory factor (NKSF/IL-12) on cell-mediated cytotoxicity against tumor-derived and virus-infected cells. Eur J Immunol 1993; 23: 1826–30

    Article  PubMed  CAS  Google Scholar 

  29. Bloom ET, Horvath JA. Cellular and molecular mechanisms of the IL-12-induced increase in allospecific murine cytolytic T cell activity. Implications for the age-related decline in CTL. J Immunol 1994; 152: 4242–54

    PubMed  CAS  Google Scholar 

  30. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145–73

    Article  PubMed  CAS  Google Scholar 

  31. Manetti R, Parronchi P, Giudizi MG, et al. Natural killer cell stimulatory factor (NKSF/IL-12) induces Thl-type specific immune responses and inhibits the development of IL-4 producing Th cells. J Exp Med 1993; 177: 1199–204

    Article  PubMed  CAS  Google Scholar 

  32. Hsieh C, Macatonia SE, Tripp CS, et al. Listeria-induced Thl development in αβ-TCR transgenic CD4+ T cells occurs through macrophage production of IL-12. Science 1993; 260: 547–9

    Article  PubMed  CAS  Google Scholar 

  33. Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells. Immunol Today 1993; 14: 335–8

    Article  PubMed  CAS  Google Scholar 

  34. Vieira LQ, Hondowicz BD, Afonso LCC, et al. Infection with Leishmania major induces interleukin-12 production in vivo. Immunol Lett 1994; 40: 157–61

    Article  PubMed  CAS  Google Scholar 

  35. McKnight AJ, Zimmer GJ, Fogelman I, et al. Effects of IL-12 on helper T cell-dependent immune responses in vivo. J Immunol 1994; 152: 2172–9

    PubMed  CAS  Google Scholar 

  36. Manetti R, Gerosa F, Giudizi MG, et al. Interleukin-12 induces stable priming for interferon-γ (IFN-γ) production during differentiation of human T helper (Th) cells and transient IFN-γ production in established Th2 cell clones. J Exp Med 1994; 179: 1273–83

    Article  PubMed  CAS  Google Scholar 

  37. Germann T, Gately MK, Schoenhaut DS, et al. Interleukin-12/T cell stimulating factor, a cytokine with multiple effects on T helper type 1 (Thl) but not on Th2 cells. Eur J Immunol 1993; 23: 1762–70

    Article  PubMed  CAS  Google Scholar 

  38. Finkelman FD, Madden KB, Cheever AW, et al. Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nematode parasites. J Exp Med 1994; 179: 1563–72

    Article  PubMed  CAS  Google Scholar 

  39. Gately MK, Warrier RR, Honasoge S, et al. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-γ in vivo. Int Immunol 1994; 6: 157–67

    Article  PubMed  CAS  Google Scholar 

  40. Gately MK, Anderson TD, Hayes TJ. Role of asialo-GM1-positive lymphoid cells in mediating the toxic effects of recombinant IL-2 in mice. J Immunol 1988; 141: 189–200

    PubMed  CAS  Google Scholar 

  41. Trinchieri G, Scott P. The role of interleukin-12 in the immune response, disease and therapy. Immunol Today 1994; 15: 460–3

    Article  PubMed  CAS  Google Scholar 

  42. Tripp CS, Gately MK, Hakimi J, et al. Neutralization of IL-12 decreases resistance to Listeria in SCID and CB-17 mice. J Immunol 1994; 152: 1883–7

    PubMed  CAS  Google Scholar 

  43. Ozmen L, Pericin M, Hakimi J, et al. IL-12, IFN-γ and TNF-γ are the key cytokines of the generalized Shwartzman reaction. J Exp Med 1994; 180: 907–15

    Article  PubMed  CAS  Google Scholar 

  44. Orange JS, Wolf SF, Biron CA. Effects of IL-12 on the response and susceptibility to experimental viral infections. J Immunol 1994; 152: 1253–64

    PubMed  CAS  Google Scholar 

  45. Romani L, Mencacci A, Tonnetti L, et al. Interleukin-12 but not interferon-γ production correlates with induction of T helper type-1 phenotype in murine candidiasis. Eur J Immunol 1994; 24: 909–15

    Article  PubMed  CAS  Google Scholar 

  46. Calandra T, Baumgartner JD, Grau GE, et al. Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. J Infect Dis 1990; 161: 982–7

    Article  PubMed  CAS  Google Scholar 

  47. Zhang M, Gately MK, Wang E, et al. Interleukin 12 at the site of disease in tuberculosis. J Clin Invest 1994; 93: 1733–9

    Article  PubMed  CAS  Google Scholar 

  48. Heinzel FP, Schoenhaut DS, Rerko RM, et al. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med 1993; 177: 1505–9

    Article  PubMed  CAS  Google Scholar 

  49. Sypek JP, Chung CL, Mayor SEH, et al. Resolution of cutaneous leishmaniasis: interleukin-12 initiates a protective T helper type 1 immune response. J Exp Med 1993; 177: 1797–802

    Article  PubMed  CAS  Google Scholar 

  50. Locksley RM. Th2 cells: help for helminths. J Exp Med 1994; 179: 1405–7

    Article  PubMed  CAS  Google Scholar 

  51. Wynn TA, Eltoum I, Oswald IP, et al. Endogenous interleukin 12 (IL-12) regulates granuloma formation induced by eggs of Schistosoma mansoni and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology. J Exp Med 1994; 179: 1551–61

    Article  PubMed  CAS  Google Scholar 

  52. Afonso LCC, Scharton TM, Vieira LQ, et al. IL-12 functions as an effective adjuvant in a vaccine against Leishmania major by directing the development of leishmanial specific CD4+ Th1 cells. Science 1994; 263: 235–7

    Article  PubMed  CAS  Google Scholar 

  53. Clerici M, Lucey DR, Berzofsky JA, et al. Restoration of HIV-specific cell-mediated immune responses by interleukin-12 in vitro. Science 1993; 262: 1721–4

    Article  PubMed  CAS  Google Scholar 

  54. Chehimi J, Starr S, Frank I, et al. Impaired interleukin-12 production in human immunodeficiency virus-infected patients. J Exp Med 1994; 179: 1361–6

    Article  PubMed  CAS  Google Scholar 

  55. Chehimi J, Trinchieri G. Interleukin-12: a bridge between innate resistance and adaptive immunity with a role in infection and acquired immunodeficiency. J Clin Immunol 1994; 14: 149–61

    Article  PubMed  CAS  Google Scholar 

  56. Lieberman M, Sigal R, Williams N, et al. Natural killer cell stimulatory factor (NKSF) augments natural killer cell and antibody-dependent tumoricidal response against colon carcinoma cell lines. J Surg Res 1991; 50: 410–5

    Article  PubMed  CAS  Google Scholar 

  57. Rossi AR, Pericle F, Rashleigh S, et al. Lysis of neuroblastoma cell lines by human natural killer cells activated by interleukin-2 and interleukin-12. Blood 1994; 83: 1323–8

    PubMed  CAS  Google Scholar 

  58. Bigda J, Mysliwska J, Dziadziuszko R, et al. Interleukin-12 augments natural killer-cell mediated cytotoxicity in hairy cell leukemia. Leuk Lymphoma 1993; 10: 121–5

    Article  PubMed  CAS  Google Scholar 

  59. Andrews JV, Schoof DD, Bertagnolli MM, et al. Immunomodulatory effects of interleukin-12 on human tumor-infiltrating lymphocytes. J Immunother 1993; 14: 1–10

    Article  CAS  Google Scholar 

  60. Zeh III HJ, Hurd S, Storkus WJ, et al. Interleukin-12 promotes the proliferation and cytolytic maturation of immune effectors: implications for the immunotherapy of cancer. J Immunother 1993; 14: 155–61

    Article  CAS  Google Scholar 

  61. Brunda MJ, Luistro L, Warrier RR, et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993; 178: 1223–30

    Article  PubMed  CAS  Google Scholar 

  62. Tahara H, Zeh III HJ, Storkus WJ, et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res 1994; 54: 182–9

    PubMed  CAS  Google Scholar 

  63. Martinotti A, Stoppacciaro A, Vagliani M, et al. CD4 T cells inhibit in vivo CD8-mediated immune response against a murine colon carcinoma transduced with IL-12 genes. Eur J Immunol 1995. In press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinchieri, G. Interleukin-12. Clin. Immunother. 3, 262–270 (1995). https://doi.org/10.1007/BF03259278

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259278

Keywords

Navigation