Skip to main content
Log in

Monoclonal Antibodies in Cancer Therapy

New Perspectives After the Colorectal Carcinoma Trial

  • Review Article
  • Research Perspective
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

A new perspective for monoclonal antibodies (mAbs) is their use in patients presenting with minimal cancer burden or micrometastatic disease, i.e. in secondary prevention of metastatic cancer disease. The first proof of efficacy of a mAb in minimal residual disease has recently been published with mAb 17-1A in patients with colorectal cancer stage III after complete resection of the primary tumour. After a median follow-up of 5 years, antibody therapy reduced overall death rate by 30% and decreased the recurrence rate by 27%. This result is similar to the benefit obtained with (radio)chemotherapy trials, however, with notably less toxicity.

Because the mechanisms of action of the different treatment modalities may be complementary in the control of tumour growth, more rationally designed clinical trials that combine conventional chemo-, hormonal or radiation therapy with immuno- or biotherapy need to be initiated. Also, with the more widespread use of prognostic parameters and increased abilities to characterise isolated tumour cells left behind in the patient, future therapy may eventually become more individualised and less consensus-oriented, thus leading to an improved risk: benefit ratio for the patient and reduced cost to society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riethmüller G, Johnson JP. Monoclonal antibodies in the detection and therapy of micrometastatic epithelial cancers. Curr Opin Immunol 1992; 4: 647–55

    Article  PubMed  Google Scholar 

  2. Riethmüller G, Schneider-Gädicke E, Johnson JR. Monoclonal antibodies in cancer therapy. Curr Opin Immunol 1993; 5: 732–9

    Article  PubMed  Google Scholar 

  3. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990; 50: 814s–9s

    PubMed  CAS  Google Scholar 

  4. Mach JP, Chatal JF, Lumbroso JD, et al. Tumor localization in patients by radiolabeled monoclonal antibodies against colon carcinoma. Cancer Res 1983; 43: 5593–600

    PubMed  CAS  Google Scholar 

  5. Meredith RF, LoBuglio AF, Plott WE. Pharmacokinetics, immune response, and biodistribution of iodine-131-labeled chimeric mouse/human IgGl,k 17-1A monoclonal. J Nucl Med 1991; 32: 1162–8

    PubMed  CAS  Google Scholar 

  6. Granowska M, Britton KE, Mather SJ, et al. Radioimmunoscintigraphy with technetium-99m labelled monoclonal antibody, 1A3, in colorectal cancer. Eur J Nucl Med 1993; 20(8): 690–8

    Article  PubMed  CAS  Google Scholar 

  7. Welt S, Divgi C, Kemeny N, et al. Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 1994; 12(8): 1561–71

    PubMed  CAS  Google Scholar 

  8. Kuby J. Immunology. 2nd ed. New York: WH Freeman, 1994: 126

    Google Scholar 

  9. Khazaeli MB, Saleh MN, Wheeler RH, et al. Phase I trial of multiple large doses of murine monoclonal antibody CO17-1A. II. Pharmacokinetics and immune response. J Natl Cancer Inst 1988; 80(12): 937–42

    Article  PubMed  CAS  Google Scholar 

  10. Frödin JE, Lefvert AK, Mellstedt H. Pharmacokinetics of the mouse monoclonal antibody 17-1A in cancer patients receiving various treatment schedules. Cancer Res 1990; 50: 4866–71

    PubMed  Google Scholar 

  11. Steplewski Z, Lübeck MD, Koprowski H. Human macrophages armed with murine immunoglobulin G2a antibodies to tumors destroy human cancer cells. Science 1983; 221: 865–7

    Article  PubMed  CAS  Google Scholar 

  12. Liesveld JL, Frediani KE, Winslow JM, et al. Cytokine effects and role of adhesive proteins and Fc receptors in human macrophage-mediated antibody dependent cellular cytotoxicity. J Cell Biochem 1991; 45: 381–90

    Article  PubMed  CAS  Google Scholar 

  13. Hugli TE. Complement. In: Baron S, editor. Medical microbiology. Menlo Park, CA: Addison-Wesley Publishing Co., 1982: 31–44

    Google Scholar 

  14. Muller-Eberhard HJ. Complement. Annu Rev Biochem 1975; 44: 697–724

    Article  PubMed  CAS  Google Scholar 

  15. Herlyn D, Lübeck M, Sears H, et al. Specific detection of anti-idiotypic immune responses in cancer patients treated with murine monoclonal antibody. J Immunol Methods 1985; 85: 27–38

    Article  PubMed  CAS  Google Scholar 

  16. Steplewski Z, Herlyn D, Lübeck M, et al. Mechanisms of tumor growth inhibition. Hybridoma 1986; 5: S59–S64

    PubMed  Google Scholar 

  17. Fogler WE, Klinger MR, Abraham KG, et al. Enhanced cytotoxicity against colon carcinoma by combinations of noncompeting monoclonal antibodies to the 17-1A antigen. Cancer Res 1988; 48: 6303–8

    PubMed  CAS  Google Scholar 

  18. Mellstedt H. Monoclonal antibodies in cancer therapy. Curr Opin Immunol 1990; 2: 708–13

    Article  CAS  Google Scholar 

  19. Khazaeli MB, Conry RM, LoBuglio AF. Human immune response to monoclonal antibodies. J Immunother 1994; 15: 42–52

    Article  CAS  Google Scholar 

  20. Carrasquillo JA, Sugarbaker P, Colcher D, et al. Radioimmunoscintigraphy of colon cancer with iodine-131-labeled B72.3 monoclonal antibody. J Nucl Med 1988; 29: 1022–30

    PubMed  CAS  Google Scholar 

  21. Scheinberg DA, Lovett D, Divgi CR, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 1991; 9: 478–90

    PubMed  CAS  Google Scholar 

  22. Blottière HM, Steplewski Z, Herlyn D, et al. Human anti-murine immunoglobulin responses and immune functions in cancer patients receiving murine monoclonal antibody therapy. Hum Antibodies Hybridomas 1991; 2: 16–25

    PubMed  Google Scholar 

  23. Riethmüller G, Schneider-Gädicke E, Schlimok G, et al. and the German Cancer Aid 17-1A Study Group. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. Lancet 1994; 343; 1177–83

    Article  PubMed  Google Scholar 

  24. Herlyn M, Steplewski Z, Herlyn D, et al. CO 17-1A and related monoclonal antibodies: their production and characterization. Hybridoma 1986; 5 Suppl. 1: 3–10

    Google Scholar 

  25. Pimm MW, Baldwin RW. Localization of an antitumor monoclonal antibody in human tumor xenografts: kinetic and quantitative studies with the 791T/36 antibody. In: Baldwin RW, Byers VS, editors. Monoclonal antibodies for cancer detection and therapy. New York: Academic Press, 1985: 97–128

    Google Scholar 

  26. Hagan P, Halpern S, Dillman R, et al. Tumor size: effect on monoclonal antibody uptake in tumor models. J Nucl Med 1986; 27: 422–7

    PubMed  CAS  Google Scholar 

  27. Hermanek P, Sobin LH, editors. UICC TNM classification of malignant tumours. 4th ed, 2nd rev. Berlin: Springer Verlag, 1992

    Google Scholar 

  28. Büchler M, Friess H, Schultheiss K-H, et al. A randomized controlled trial of adjuvant immunotherapy (murine monoclonal antibody 494/32) in resectable pancreatic cancer. Cancer 1991; 68: 1507–12

    Article  PubMed  Google Scholar 

  29. Safi F, Roscher R, Beger HG. Prognostic value of CA-19-9 determination in resected pancreatic carcinoma. Cancer 1988; 3: 279–86

    Google Scholar 

  30. Krook JE, Moertel CG, Gunderson LL, et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med 1991; 324(11): 709–15

    Article  PubMed  CAS  Google Scholar 

  31. Moertel CG, Fleming TR, MacDonald JS, et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 1990; 322(6): 352–8

    Article  PubMed  CAS  Google Scholar 

  32. Erlichmann C, Marsoni S, Seitz JF, et al. Event free and overall survival is increased by FUFA in resected B and C colon cancer: a prospective pooled analysis of 3 randomized trials [abstract]. Proc Am Soc Clin Oncol 1994; 13: 194

    Google Scholar 

  33. Wolmark N, Rockette H, Fisher B, et al. The benefit of leucovorin-modulated fluorouracil as postoperative adjuvant therapy for primary colon cancer: results from national surgical adjuvant breast and bowel project protocol C-03. J Clin Oncol 1993; 11: 1879–87

    PubMed  CAS  Google Scholar 

  34. Laffer U, Metzger U, Aeberhard P, et al. Long-term results of single course of adjuvant intraportal chemotherapy for colorectal cancer. Lancet 1995; 345: 349–53

    Google Scholar 

  35. International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) Investigators. Efficacy of adjuvant fluorouracil and folinic acid in colon cancer. Lancet 1995; 345: 939–44

    Article  Google Scholar 

  36. Krook JE, Moertel CG, Gunderson LL, et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med 1991; 324(11): 709–15

    Article  PubMed  CAS  Google Scholar 

  37. NIH Consensus Conference. Adjuvant therapy for patients with colon and rectal cancer. JAMA 1990; 264(11): 1444–50

    Article  Google Scholar 

  38. Konsensuskonferenz der CAO, AIO und ARO. Konsensus der CAO, AIO und ARO zur adjuvanten Therapie bei Colon- und Rectumcarcinom vom 11. März 1994. Chirurg 1994; 65: 411–2

    Google Scholar 

  39. Diasio RB, Beavers TL, Carpenter JT. Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil induced toxicity. J Clin Invest 1988; 81: 47–51

    Article  PubMed  CAS  Google Scholar 

  40. Schmoll H-J. Colorectal carcinoma: current problems and future perspectives. Ann Oncol 1994; 5(3): 115–21

    Article  PubMed  Google Scholar 

  41. Jen J, Kim H, Piantadosi S, et al. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 1994; 331: 213–21

    Article  PubMed  CAS  Google Scholar 

  42. Lindemann F, Schlimok G, Dirschedl P, et al. Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 1992; 340: 685–9

    Article  PubMed  CAS  Google Scholar 

  43. Schlimok G, Funke I, Bock B, et al. Epithelial tumor cells in bone marrow of patients with colorectal cancer: immunocytochemical detection, phenotypic characterization, and prognostic significance. J Clin Oncol 1990; 8: 831–7

    PubMed  CAS  Google Scholar 

  44. Pantel K, Izbicki JR, Angstwurm M, et al. Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res 1993; 53: 1027–31

    PubMed  CAS  Google Scholar 

  45. Pantel K, Schlimok G, Braun S, et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 1993; 85(17): 1419–24

    Article  PubMed  CAS  Google Scholar 

  46. Easton DF, Bishop DT, Ford D, et al. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. Am J Hum Genet 1993; 52: 678–701

    PubMed  CAS  Google Scholar 

  47. Easton DF, Ford D, Bishop DT, et al. Breast and ovarian cancer incidence in BRCA 1 mutation carriers. Am J Hum Genet. In press

  48. Ragnhammar P, Frödin JE, Trotta PP, et al. Cytotoxicity of white blood cells activated by granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor and macrophage-colony-stimulating factor against tumor cells in the presence of various monoclonal antibodies. Cancer Immunol Immunother 1994; 391: 254–62

    Article  Google Scholar 

  49. Masucci G, Mellstedt H. Combinations of IL-2, GM-CSF, IL-4, IFN-α and TNF-α increase the antibody dependent cellular cytotoxicity (ADCC) of blood mononuclear cells in presence of either mouse or chimeric MAb 17-1A: a preclinical evaluation. Cancer J 1991; 4(3): 168–73

    CAS  Google Scholar 

  50. Creekmore S, Urba W, Kopp W, et al. Phase Ib/II trial of R24 antibody and interleukin 2 in melanoma [abstract]. Proc Am Soc Clin Oncol 1992; 11: 1186

    Google Scholar 

  51. Renner C, Pfreundschuh M. Status of bispecific monoclonal antibodies for cancer therapy. Clin Immunother 1996; 5(1): 30–9

    Article  Google Scholar 

  52. Schlimok G, Funke I, Holzmann B, et al. Micrometastatic cancer cells in bone marrow: in vitro detection with anticytokeratin and in vivo labelling with 17-1A monoclonal antibodies. Proc Natl Acad Sci USA 1987; 84: 8672–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holz, E., Gruber, R. & Riethmüller, G. Monoclonal Antibodies in Cancer Therapy. Clin. Immunother. 5, 214–222 (1996). https://doi.org/10.1007/BF03259084

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259084

Keywords

Navigation