Skip to main content

Advertisement

Log in

The potential of monoclonal antibodies for colorectal cancer therapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Conventional chemotherapy has significant limitations for colorectal cancer (CRC) treatment, especially those who have developed metastatic recurrence CRC. A growing number of studies have investigated the potential use of monoclonal antibodies (mAbs) for CRC therapy. mAbs showing clinical benefits for CRC, making the treatment more selective with lower side effects without significant immunogenicity. In addition, recent advancements in antibody engineering strategies and the development of bifunctional or even trifunctional drugs have helped to overcome heterogeneity as the main challenge in cancer treatment. The current review discusses advances in applying mAbs for CRC therapy alone, combined, or with small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics. CA Cancer J Clin. 2020;70(3):145–64 (PubMed PMID: 32133645. Epub 2020/03/07. eng).

    Article  PubMed  Google Scholar 

  2. Sinicrope FA. Increasing incidence of early-onset colorectal cancer. N Engl J Med. 2022;386(16):1547–58 (PubMed PMID: 35443109. Epub 2022/04/21. eng).

    Article  CAS  PubMed  Google Scholar 

  3. Su J, Liang H, Yao W, Wang N, Zhang S, Yan X, et al. MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS ONE. 2014;9(12):114420 (PubMed PMID: 25474488. Pubmed Central PMCID: PMC4256231. Epub 2014/12/05. eng).

    Article  Google Scholar 

  4. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–7 (PubMed PMID: 21037809. Pubmed Central PMCID: PMC2796096. Epub 2010/11/03. eng).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soleimani M, Mahnam K, Mirmohammad-Sadeghi H, Sadeghi-Aliabadi H, Jahanian-Najafabadi A. Theoretical design of a new chimeric protein for the treatment of breast cancer. Res Pharm Sci. 2016;11(3):187–99 (PubMed PMID: 27499788. Pubmed Central PMCID: PMC4962299. Epub 2016/08/09. eng).

    PubMed  PubMed Central  Google Scholar 

  6. Noei A, Nili-Ahmadabadi A, Soleimani M. The enhanced cytotoxic effects of the p28-apoptin chimeric protein as a novel anti-cancer agent on breast cancer cell lines. Drug Res. 2019;69(3):144–50 (PubMed PMID: 30060264. Epub 2018/07/31. eng).

    Article  CAS  Google Scholar 

  7. Yokota T, Ura T, Shibata N, Takahari D, Shitara K, Nomura M, et al. BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br J Cancer. 2011;104(5):856–62 (PubMed PMID: 21285991. Pubmed Central PMCID: PMC3048210. Epub 2011/02/03. eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14 (PubMed PMID: 25529996. Pubmed Central PMCID: PMC4622599. Epub 2014/12/23. eng).

    Article  CAS  PubMed  Google Scholar 

  9. García-Aranda M, Redondo M. Targeting receptor kinases in colorectal cancer. Cancers (Basel). 2019;11(4):433 (PubMed PMID: 30934752. eng).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6(9):714–27 (PubMed PMID: 16929325. Epub 2006/08/25. eng).

    Article  CAS  PubMed  Google Scholar 

  11. Yao C, Su L, Shan J, Zhu C, Liu L, Liu C, et al. IGF/STAT3/NANOG/slug signaling axis simultaneously controls epithelial-mesenchymal transition and stemness maintenance in colorectal cancer. Stem Cells (Dayton, Ohio). 2016;34(4):820–31 (PubMed PMID: 26840943. Epub 2016/02/04. eng).

    Article  PubMed  Google Scholar 

  12. Vigneri PG, Tirrò E, Pennisi MS, Massimino M, Stella S, Romano C, et al. The insulin/IGF system in colorectal cancer development and resistance to therapy. Front Oncol. 2015;5:230 (PubMed PMID: 26528439. eng).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Misale S, Di Nicolantonio F, Sartore-Bianchi A, Siena S, Bardelli A. Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov. 2014;4(11):1269–80 (PubMed PMID: 25293556. Epub 2014/10/09. eng).

    Article  CAS  PubMed  Google Scholar 

  14. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37 (PubMed PMID: 28303026. Epub 2017/03/18. eng).

    Article  CAS  PubMed  Google Scholar 

  15. Shu Q, Wang L, Ouyang H, Wang W, Liu F, Fu Z. Multiplexed immunochromatographic test strip for time-resolved chemiluminescent detection of pesticide residues using a bifunctional antibody. Biosens Bioelectron. 2017;87:908–14 (PubMed PMID: 27664410. Epub 2016/09/25. eng).

    Article  CAS  PubMed  Google Scholar 

  16. Chari RV, Miller ML, Widdison WC. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl. 2014;53(15):3796–827 (PubMed PMID: 24677743. Epub 2014/03/29. eng).

    Article  CAS  PubMed  Google Scholar 

  17. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–45 (PubMed PMID: 15269313. Epub 2004/07/23. eng).

    Article  CAS  PubMed  Google Scholar 

  18. Vincenzi B, Schiavon G, Silletta M, Santini D, Tonini G. The biological properties of cetuximab. Crit Rev Oncol/Hematol. 2008;68(2):93–106 (PubMed PMID: 18676156. Epub 2008/08/05. eng).

    Article  PubMed  Google Scholar 

  19. Tejpar S, Peeters M, Humblet Y, Gelderblom H, Vermorken J, Viret F, et al. Phase I/II study of cetuximab dose-escalation in patients with metastatic colorectal cancer (mCRC) with no or slight skin reactions on cetuximab standard dose treatment (EVEREST): Pharmacokinetic (PK), Pharmacodynamic (PD) and efficacy data. J Clin Oncol. 2007;25(18_suppl):4037.

    Article  Google Scholar 

  20. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng B, Wang X, Wei M, Wang Q, Li J, Bi L, et al. First-line cetuximab versus bevacizumab for RAS and BRAF wild-type metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer. 2019;19(1):280.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qiu LX, Mao C, Zhang J, Zhu XD, Liao RY, Xue K, et al. Predictive and prognostic value of KRAS mutations in metastatic colorectal cancer patients treated with cetuximab: a meta-analysis of 22 studies. Eur J Cancer (Oxford, England: 1990). 2010;46(15):2781–7 (PubMed PMID: 20580219. Epub 2010/06/29. eng).

    Article  CAS  Google Scholar 

  23. Lièvre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374–9 (PubMed PMID: 18202412. Epub 2008/01/19. eng).

    Article  PubMed  Google Scholar 

  24. Rouyer M, François E, Sa Cunha A, Monnereau A, Bignon E, Jové J, et al. Effectiveness of first-line cetuximab in wild-type RAS metastatic colorectal cancer according to tumour BRAF mutation status from the EREBUS cohort. Br J Clin Pharmacol. 2021;87(3):1120–8 (PubMed PMID: 32656857. Epub 2020/07/14. eng).

    Article  CAS  PubMed  Google Scholar 

  25. Brule SY, Jonker DJ, Karapetis CS, O’Callaghan CJ, Moore MJ, Wong R, et al. Location of colon cancer (right-sided [RC] versus left-sided [LC]) as a predictor of benefit from cetuximab (CET): NCIC CTG CO1.7. J Clin Oncol. 2013;31(15):3528.

    Article  Google Scholar 

  26. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42 (PubMed PMID: 15175435. Epub 2004/06/04. eng).

    Article  CAS  PubMed  Google Scholar 

  27. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005;65(3):671–80 (PubMed PMID: 15705858. Epub 2005/02/12. eng).

    Article  CAS  PubMed  Google Scholar 

  28. Petrelli F, Coinu A, Cabiddu M, Ghilardi M, Barni S. KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials. Med Oncol (Northwood, London, England). 2013;30(3):650 (PubMed PMID: 23828442. Epub 2013/07/06. eng).

    Article  Google Scholar 

  29. Snyder M, Bottiglieri S, Almhanna K. Impact of primary tumor location on first-line bevacizumab or cetuximab in metastatic colorectal cancer. Rev Recent Clin Trials. 2018;13(2):139–49 (PubMed PMID: 29595113. Epub 2018/03/30. eng).

    Article  CAS  PubMed  Google Scholar 

  30. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34 (PubMed PMID: 18316791. Epub 2008/03/05. eng).

    Article  CAS  PubMed  Google Scholar 

  31. Ketzer S, Schimmel K, Koopman M, Guchelaar HJ. Clinical pharmacokinetics and pharmacodynamics of the epidermal growth factor receptor inhibitor panitumumab in the treatment of colorectal cancer. Clin Pharmacokinet. 2018;57(4):455–73 (PubMed PMID: 28853050. Pubmed Central PMCID: PMC5856878 review. CONFLICT OF INTEREST: Sander Ketzer, Kirsten J.M. Schimmel, Miriam Koopman, and Henk-Jan Guchelaar declare that they have no conflicts of interest. Epub 2017/08/31. eng).

    Article  CAS  PubMed  Google Scholar 

  32. Wang C, Tan C, Chen X, Chen S. The efficacy and safety of panitumumab supplementation for colorectal cancer: a meta-analysis of randomized controlled studies. Medicine. 2020;99(11):19210 (PubMed PMID: 32176047. Pubmed Central PMCID: PMC7220441. Epub 2020/03/17. eng).

    Article  Google Scholar 

  33. Kim TW, Peeters M, Thomas A, Gibbs P, Hool K, Zhang J, et al. Impact of emergent circulating tumor DNA RAS mutation in panitumumab-treated chemoresistant metastatic colorectal cancer. Clin Cancer Res. 2018;24(22):5602–9 (PubMed PMID: 29898991. Epub 2018/06/15. eng).

    Article  CAS  PubMed  Google Scholar 

  34. Kurreck A, Geissler M, Martens UM, Riera-Knorrenschild J, Greeve J, Florschütz A, et al. Dynamics in treatment response and disease progression of metastatic colorectal cancer (mCRC) patients with focus on BRAF status and primary tumor location: analysis of untreated RAS-wild-type mCRC patients receiving FOLFOXIRI either with or without panitumumab in the VOLFI trial (AIO KRK0109). J Cancer Res Clin Oncol. 2020;146(10):2681–91 (PubMed PMID: 32449003. Pubmed Central PMCID: PMC7467910. Epub 2020/05/26. eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Köhne CH, Karthaus M, Mineur L, Thaler J, Van den Eynde M, Gallego J, et al. Impact of primary tumour location and early tumour shrinkage on outcomes in patients with RAS wild-type metastatic colorectal cancer following first-line FOLFIRI plus panitumumab. Drugs R D. 2019;19(3):267–75 (PubMed PMID: 31300973. Pubmed Central PMCID: PMC6738356 Servier. Meinolf Karthaus has consulting/advisory roles and has participated in steering committees for Amgen and has received travel/accommodation/expenses from Amgen. Laurent Mineur has consulting/advisory roles for Bayer and Merck, and has received travel/accommodation/expenses from Merck and Ipsen, honoraria from Amgen, Bayer, Ipsen, Merck and Sanofi, and research funding from Chugai, Merck and Sanofi. Josef Thaler has received honoraria and research funding from Amgen. Marc Van den Eynde has consulting/advisory roles for Amgen, Bayer, Merck and Servier, and has received travel/accommodation/expenses from Amgen, Bayer, Merck and Roche, honoraria from Amgen, Bayer, Merck, Roche, Sanofi and Servier, and research funding from Roche. Javier Gallego has consulting/advisory roles for Amgen, Bayer, Celgene, Lilly, Merck Serono, Roche and Sanofi. Reija Koukakis is an Amgen Ltd. employee and owns restricted shares in Amgen. Marloes Berkhout is an Amgen (Europe) GmbH employee and owns restricted shares in Amgen. Ralf-Dieter Hofheinz has received honoraria (lecturer fees) and clinical trial funding from Amgen Ltd. and Merck. Epub 2019/07/14. eng).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet (London, England). 2014;383(9911):31–9 (PubMed PMID: 24094768. Epub 2013/10/08. eng).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Popel AS, Bazzazi H. Combining multikinase tyrosine kinase inhibitors targeting the vascular endothelial growth factor and cluster of differentiation 47 signaling pathways is predicted to increase the efficacy of antiangiogenic combination therapies. ACS Pharmacol Transl Sci. 2023;6(5):710–26.

    Article  CAS  PubMed  Google Scholar 

  38. Clarke JM, Hurwitz HI, Rangwala F. Understanding the mechanisms of action of antiangiogenic agents in metastatic colorectal cancer: a clinician’s perspective. Cancer Treat Rev. 2014;40(9):1065–72 (PubMed PMID: 25047778. Epub 2014/07/23. eng).

    Article  CAS  PubMed  Google Scholar 

  39. Wang K, Qu X, Wang Y, Dong W, Shen H, Zhang T, et al. The impact of ramucirumab on survival in patients with advanced solid tumors: a systematic review and meta-analysis of randomized II/III controlled trials. Clin Drug Investig. 2016;36(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshino T, Portnoy DC, Obermannová R, Bodoky G, Prausová J, Garcia-Carbonero R, et al. Biomarker analysis beyond angiogenesis: RAS/RAF mutation status, tumour sidedness, and second-line ramucirumab efficacy in patients with metastatic colorectal carcinoma from RAISE-a global phase III study. Ann Oncol. 2019;30(1):124–31 (PubMed PMID: 30339194. Pubmed Central PMCID: PMC6336001. Epub 2018/10/20. eng).

    Article  CAS  PubMed  Google Scholar 

  41. Roth MT, Das S. Pembrolizumab in unresectable or metastatic MSI-high colorectal cancer: safety and efficacy. Expert Rev Anticancer Ther. 2021;21(2):229–38 (PubMed PMID: 33183114. Pubmed Central PMCID: PMC8118165. Epub 2020/11/14. eng).

    Article  CAS  PubMed  Google Scholar 

  42. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parker N, Al-Obaidi A, Truong QV, Badgett R. Pembrolizumab versus the standard of care for cancer therapy: a meta-analysis of 12 KEYNOTE trials comparing overall survival. J Clin Oncol. 2019;37(15_suppl):e14159-e.

    Article  Google Scholar 

  44. Diaz LA Jr, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022;23(5):659–70 (PubMed PMID: 35427471. Pubmed Central PMCID: PMC9533375. Epub 2022/04/16. eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mehrvarz SA, Overman MJ, Kopetz S. Nivolumab in the treatment of microsatellite instability high metastatic colorectal cancer. Fut Oncol. 2018;14(18):1869–74 (PubMed PMID: 29473436. Epub 02/23. eng).

    Article  Google Scholar 

  46. Guo L, Zhang H, Chen B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J Cancer. 2017;8(3):410–6 (PubMed PMID: 28261342. eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tie Y, Ma X, Zhu C, Mao Y, Shen K, Wei X, et al. Safety and efficacy of nivolumab in the treatment of cancers: a meta-analysis of 27 prospective clinical trials. Int J Cancer. 2017;140(4):948–58 (PubMed PMID: 27813059. Epub 2016/11/05. eng).

    Article  CAS  PubMed  Google Scholar 

  48. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncol. 2007;12(3):356–61 (PubMed PMID: 17405901. Epub 2007/04/05. eng).

    Article  CAS  Google Scholar 

  49. Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26(12):2013–9.

    Article  CAS  PubMed  Google Scholar 

  50. Pathak SSS, Banerjee A, Marotta F, Gopinath M, Murugesan R, et al. Review on comparative efficacy of bevacizumab, panitumumab and cetuximab antibody therapy with combination of FOLFOX-4 in KRAS-mutated colorectal cancer patients. Oncotarget. 2017;9(7):7739–48 (PubMed PMID: 29484148. eng).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Holch JW, Ricard I, Stintzing S, Modest DP, Heinemann V. The relevance of primary tumour location in patients with metastatic colorectal cancer: a meta-analysis of first-line clinical trials. Eur J Cancer (Oxford, England: 1990). 2017;70:87–98 (PubMed PMID: 27907852. Epub 2016/12/03. eng).

    Article  Google Scholar 

  52. Heinemann V, Weikersthal L, Decker T, Kiani A, Kaiser F, Al-Batran S-E, et al. FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: final survival and per-protocol analysis of FIRE-3, a randomised clinical trial. Br J Cancer. 2020 124.

  53. Van Cutsem E, Lenz HJ, Köhne CH, Heinemann V, Tejpar S, Melezínek I, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 2015;33(7):692–700 (PubMed PMID: 25605843. Epub 2015/01/22. eng).

    Article  PubMed  Google Scholar 

  54. Stintzing S, Miller-Phillips L, Modest DP, von Fischer WL, Decker T, Kiani A, et al. Impact of BRAF and RAS mutations on first-line efficacy of FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab: analysis of the FIRE-3 (AIO KRK-0306) study. Eur J Cancer (Oxford England: 1990). 2017;79:50–60 (PubMed PMID: 28463756. Epub 2017/05/04. eng).

    Article  CAS  Google Scholar 

  55. Sagawa T, Tsuji A, Satake H, Nakamura M, Sunakawa Y, Korehisa S, et al. O7–4 Ramucirumab plus FOLFIRI for RAS wild-type mCRC refractory to 1st-line treatment with anti-EGFR antibody: JACCRO CC-16. Ann Oncol. 2022;33:S471–2.

    Article  Google Scholar 

  56. Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015;16(5):499–508 (PubMed PMID: 25877855. Epub 2015/04/17. eng).

    Article  CAS  PubMed  Google Scholar 

  57. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Kaiser F, Al-Batran SE, et al. FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: final survival and per-protocol analysis of FIRE-3, a randomised clinical trial. Br J Cancer. 2021;124(3):587–94 (PubMed PMID: 33154570. Pubmed Central PMCID: PMC7851157 Sirtex, Bristol-Myers Squibb, Merck Sharp & Dohme, Bayer, Boehringer-Ingelheim and Eli Lilly and Company. Dr. Jung reported financial relationships with Amgen, AstraZeneca, Boehringer-Ingelheim, Bristol-Myers Squibb, Roche, Novartis and Merck-Serono. Dr. Kiani reported receiving honoraria from Merck & Co, Roche and Amgen. Dr. Kirchner reported financial relationships with Merck-Serono, AstraZeneca, Amgen, Merck Sharp & Dohme, Novartis, Pfizer and Roche. Dr. Kullmann reported financial relationships with Roche and Celgene. Dr. Modest reported financial relationships with Merck-Serono, Roche, Servier, Sirtex, Bristol-Myers Squibb, Merck Sharp & Dohme, Bayer, Boehringer-Ingelheim and Eli Lilly and Company. Dr. Moehler reported financial relationships with Amgen, Bristol-Myers Squibb, Merck Sharp & Dohme, Merck-Serono, Eli Lilly and Company, Dr. Falk Pharma GmbH, Pfizer and Roche. Dr. Stintzing reported receiving honoraria from Amgen, Merck-Serono, Pierre-Fabre, Servier, Roche, Sanofi, Bayer, Takeda and Eli Lilly and Company. Dr. von Weikersthal reported receiving honoraria from Roche, Novartis and Genzyme. No other disclosures were reported. Epub 2020/11/07. eng).

    Article  CAS  PubMed  Google Scholar 

  58. Okita Y, Tsuji A, Watanabe T, Satake H, Goto M, Yasui H, et al. P-107 efficacy of 2nd-line ramucirumab (RAM) plus FOLFIRI for RAS wild-type metastatic colorectal cancer (mCRC) by prior regimen: subgroup analysis of the JACCRO CC-16. Ann Oncol. 2022;33:S287.

    Article  Google Scholar 

  59. Overman MJ, Lenz H-J, Andre T, Aglietta M, Wong MK, Luppi G, et al. Nivolumab (NIVO) ± ipilimumab (IPI) in patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): five-year follow-up from CheckMate 142. J Clin Oncol. 2022;40(16_suppl):3510.

    Article  Google Scholar 

  60. Lenz H-J, Lonardi S, Zagonel V, Van Cutsem E, Limon M, Wong M, et al. Subgroup analyses of patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC) treated with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line (1L) therapy:Two-year clinical update. J Clin Oncol. 2021;39:58.

    Article  Google Scholar 

  61. Lenz H-J, Cutsem EV, Limon ML, Wong KYM, Hendlisz A, Aglietta M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol. 2022;40(2):161–70 (PubMed PMID: 34637336).

    Article  CAS  PubMed  Google Scholar 

  62. Uhlig J, Potenberg J, Semsek D, Stübs P, Fichter CD, Köhler A, et al. 457P 1st-line panitumumab plus FOLFIRI or FOLFOX for patients with RAS wildtype metastatic colorectal cancer in Germany: interim results of the non-interventional study VALIDATE. Ann Oncol. 2020;31:S436.

    Article  Google Scholar 

  63. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Final results from PRIME: randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol. 2014;25(7):1346–55 (PubMed PMID: 24718886. Epub 2014/04/11. eng).

    Article  CAS  PubMed  Google Scholar 

  64. Oliner KS, Douillard J-Y, Siena S, Tabernero J, Burkes RL, Barugel ME, et al. Analysis of KRAS/NRAS and BRAF mutations in the phase III PRIME study of panitumumab (pmab) plus FOLFOX versus FOLFOX as first-line treatment (tx) for metastatic colorectal cancer (mCRC). J Clin Oncol. 2013;31(15_suppl):3511.

    Article  Google Scholar 

  65. Boeckx N, Koukakis R, Op de Beck K, Rolfo C, Van Camp G, Siena S, et al. Primary tumor sidedness has an impact on prognosis and treatment outcome in metastatic colorectal cancer: results from two randomized first-line panitumumab studies. Ann Oncol. 2017 28(8):1862–8. (PubMed PMID: 28449055. Pubmed Central PMCID: PMC5834073. Epub 2017/04/28. Eng)

  66. Scartozzi M, Bianconi M, Maccaroni E, Giampieri R, Berardi R, Cascinu S. Dalotuzumab, a recombinant humanized mAb targeted against IGFR1 for the treatment of cancer. Curr Opin Mol Therap. 2010;12(3):361–71 (PubMed PMID: 20521225. Epub 2010/06/04. eng).

    CAS  Google Scholar 

  67. Atzori F, Tabernero J, Cervantes A, Prudkin L, Andreu J, Rodríguez-Braun E, et al. A phase I pharmacokinetic and pharmacodynamic study of dalotuzumab (MK-0646), an anti-insulin-like growth factor-1 receptor monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 2011;17(19):6304–12 (PubMed PMID: 21810918. Epub 2011/08/04. eng).

    Article  CAS  PubMed  Google Scholar 

  68. Moore PA, Shah K, Yang Y, Alderson R, Roberts P, Long V, et al. Development of MGD007, a gpA33 x CD3-bispecific DART protein for T-cell immunotherapy of metastatic colorectal cancer. Mol Cancer Ther. 2018;17(8):1761–72 (PubMed PMID: 29866746. Epub 2018/06/06. eng).

    Article  CAS  PubMed  Google Scholar 

  69. Hurwitz H, Crocenzi T, Lohr J, Bonvini E, Johnson S, Moore P, et al. A Phase I, first-in-human, open label, dose escalation study of MGD007, a humanized gpA33 × CD3 dual-affinity re-targeting (DART(®)) protein in patients with relapsed/refractory metastatic colorectal carcinoma. J Immunother Cancer. 2014;2(Suppl 3):P86. https://doi.org/10.1186/2051-1426-2-S3-P86. (eCollection 2014).

    Article  PubMed Central  Google Scholar 

  70. Hurwitz H, Crocenzi T, Lohr J, Bonvini E, Johnson S, Moore P, et al. A Phase I, first-in-human, open label, dose escalation study of MGD007, a humanized gpA33 × CD3 dual-affinity re-targeting (DART(®)) protein in patients with relapsed/refractory metastatic colorectal carcinoma. J Immunother Cancer. 2014;2(3):86 (PubMed PMID: PMC4288761. eng).

    Article  Google Scholar 

  71. Sharkey R, Govindan S, Cardillo T, Donnell J, Xia J, Rossi E, et al. Selective and concentrated accretion of SN-38 with a CEACAM5-targeting antibody-drug conjugate (ADC), labetuzumab govitecan (IMMU-130). Mol Cancer Ther. 2017 10/27;17:molcanther.0442.2017.

  72. Dotan E, Cohen SJ, Starodub AN, Lieu CH, Messersmith WA, Simpson PS, et al. Phase I/II trial of labetuzumab govitecan (Anti-CEACAM5/SN-38 Antibody-Drug Conjugate) in patients with refractory or relapsing metastatic colorectal cancer. J Clin. 2017;35(29):3338–46 (PubMed PMID: 28817371. Pubmed Central PMCID: PMC8259133. Epub 2017/08/18. eng).

    Article  CAS  Google Scholar 

  73. Shi S, Lu K, Gao H, Sun H, Li S. Erlotinib in combination with bevacizumab and FOLFOX4 as second-line chemotherapy for patients with metastatic colorectal cancer. Am J Cancer Res. 2017;7(9):1971–7 (PubMed PMID: 28979818. Pubmed Central PMCID: PMC5622230. Epub 2017/10/06. eng).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet (London, England). 2011;377(9783):2103–14 (PubMed PMID: 21641636. Pubmed Central PMCID: PMC3159415. Epub 2011/06/07. eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yildiz R, Buyukberber S, Uner A, Yamac D, Coskun U, Kaya AO, et al. Bevacizumab plus irinotecan-based therapy in metastatic colorectal cancer patients previously treated with oxaliplatin-based regimens. Cancer Investig. 2010;28(1):33–7 (PubMed PMID: 19995229. Epub 2009/12/10. eng).

    Article  CAS  Google Scholar 

  76. Van Cutsem E, Eng C, Nowara E, Swieboda-Sadlej A, Tebbutt NC, Mitchell E, et al. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin Cancer Res. 2014;20(16):4240–50 (PubMed PMID: 24919569. Pubmed Central PMCID: PMC4371780. Epub 2014/06/13. eng).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov. 2023;22(3):213–34.

    Article  CAS  PubMed  Google Scholar 

  78. Hong Y, Nam S-M, Moon A. Antibody–drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry. Arch Pharm Res. 2023;46(3):131–48.

    Article  CAS  PubMed  Google Scholar 

  79. Fu W, Li G, Lei C, Qian K, Zhang S, Zhao J, et al. Bispecific antibodies targeting EGFR/Notch enhance the response to talazoparib by decreasing tumour-initiating cell frequency. Theranostics. 2023;13(11):3641–54 (PubMed PMID: 37441599. Pubmed Central PMCID: PMC10334837. Epub 2023/07/13. eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang B, Gorman J, Kwon YD, Pegu A, Chao CW, Liu T, et al. Bispecific antibody CAP256.J3LS targets V2-apex and CD4-binding sites with high breadth and potency. MAbs. 2023;15(1):2165390.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Thoreau F, Szijj PA, Greene MK, Rochet LNC, Thanasi IA, Blayney JK, et al. Modular chemical construction of IgG-like mono- and bispecific synthetic antibodies (SynAbs). ACS Central Sci. 2023;9(3):476–87.

    Article  CAS  Google Scholar 

  82. Lipinski B, Unmuth L, Arras P, Becker S, Bauer C, Toleikis L, et al. Generation and engineering of potent single domain antibody-based bispecific IL-18 mimetics resistant to IL-18BP decoy receptor inhibition. MAbs. 2023;15(1):2236265.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pourjafar M, Saidijam M, Miehe M, Najafi R, Soleimani M, Spillner E. Surfaceome profiling suggests potential of anti-MUC1×EGFR bispecific antibody for breast cancer targeted therapy. J Immunother. 2023. https://doi.org/10.1097/CJI.0000000000000482. (PubMed PMID: 00002371–990000000–00063).

    Article  PubMed  Google Scholar 

  84. Moeinzadeh L, Ramezani A, Mehdipour F, Yazdanpanah-Samani M, Razmkhah M. Activation of T lymphocytes with anti-PDL1-BiTE in the presence of adipose-derived mesenchymal stem cells (ASCs). BioMed Res Int. 2023;2023:7692726.

    Article  Google Scholar 

  85. Yin Y, Rodriguez JL, Li N, Thokala R, Nasrallah MP, Hu L, et al. Locally secreted BiTEs complement CAR T cells by enhancing killing of antigen heterogeneous solid tumors. Mol Ther. 2022;30(7):2537–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Scott EM, Jacobus EJ, Lyons B, Frost S, Freedman JD, Dyer A, et al. Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J Immunother Cancer. 2019;7(1):320 (PubMed PMID: 31753017. Pubmed Central PMCID: PMC6873687. Epub 2019/11/23. eng).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sun H, Song X, Li C, Li Q, Liu S, Deng N. Humanized disulfide-stabilized diabody against fibroblast growth factor-2 inhibits PD-L1 expression and epithelial-mesenchymal transition in hepatoma cells through STAT3. IUBMB Life.n/a(n/a).

  88. Seifert O, Rau A, Beha N, Richter F, Kontermann RE. Diabody-Ig: a novel platform for the generation of multivalent and multispecific antibody molecules. MAbs. 2019;11(5):919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang L, Shah K, Barat B, Lam C-YK, Gorlatov S, Ciccarone V, et al. Multispecific, multivalent antibody-based molecules engineered on the DART® and TRIDENTTM platforms. Curr Protoc Immunol. 2020;129(1):95.

    Article  Google Scholar 

  90. Liu L, Lam CK, Long V, Widjaja L, Yang Y, Li H, et al. MGD011, a CD19 x CD3 dual-affinity retargeting bi-specific molecule incorporating extended circulating Half-life for the treatment of B-cell malignancies. Clin Cancer Res. 2017;23(6):1506–18 (PubMed PMID: 27663593. Epub 2016/09/25. eng).

    Article  CAS  PubMed  Google Scholar 

  91. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9(2):182–212 (PubMed PMID: 28071970. Pubmed Central PMCID: PMC5297537. Epub 2017/01/11. eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oates J, Jakobsen BK. ImmTACs: Novel bi-specific agents for targeted cancer therapy. Oncoimmunology. 2013;2(2):22891 (PubMed PMID: 23525668. Pubmed Central PMCID: PMC3601161. Epub 2013/03/26. eng).

    Article  Google Scholar 

  93. Song A-Y, Kim H, Kim JM, Hwang S-H, Ko D-H, Kim HS. Bispecific antibody designed for targeted NK cell activation and functional assessment for biomedical applications. ACS Appl Mater Interfaces. 2021;13(36):42370–81.

    Article  CAS  PubMed  Google Scholar 

  94. Reusing SB, Vallera DA, Manser AR, Vatrin T, Bhatia S, Felices M, et al. CD16xCD33 Bispecific Killer Cell Engager (BiKE) as potential immunotherapeutic in pediatric patients with AML and biphenotypic ALL. Cancer Immunol Immunother. 2021;70(12):3701–8 (PubMed PMID: 34398302. Pubmed Central PMCID: PMC8571204. Epub 2021/08/17. eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sanjanwala D, Patravale V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discov Today. 2023;28(5):103550.

    Article  CAS  PubMed  Google Scholar 

  96. Ackaert C, Smiejkowska N, Xavier C, Sterckx YGJ, Denies S, Stijlemans B, et al. Immunogenicity risk profile of nanobodies. Front Immunol. 2021;12 (English)

  97. Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, et al. Bispecific antibodies: from research to clinical application. Front Immunol. 2021;12 (English)

  98. Chen S, Li J, Li Q, Wang Z. Bispecific antibodies in cancer immunotherapy. Hum Vacc Immunother. 2016;12(10):2491–500 (PubMed PMID: 27249163. Pubmed Central PMCID: PMC5084997. Epub 2016/06/02. eng).

    Article  Google Scholar 

  99. Huang L, Shah K, Barat B, Lam CK, Gorlatov S, Ciccarone V, et al. Multispecific, multivalent antibody-based molecules engineered on the DART® and TRIDENT(TM) platforms. Curr Protoc Immunol. 2020;129(1):95 (PubMed PMID: 32294319. Epub 2020/04/16. eng).

    Article  Google Scholar 

  100. Arman I, Haus-Cohen M, Reiter Y. The intracellular proteome as a source for novel targets in CAR-T and T-cell engagers-based immunotherapy. Cells. 2022;12(1). (PubMed PMID: 36611821. Pubmed Central PMCID: PMC9818436. Epub 2023/01/09. eng)

Download references

Funding

This work was funded by Vice Chancellor for Research and Technology, Hamadan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

FH and MS: Conceptualization and writing original draft; SM, EP, NA, AS, and MHA: resources, review, and editing.

Corresponding author

Correspondence to Meysam Soleimani.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, F., Madadi, S., Alizadeh, N. et al. The potential of monoclonal antibodies for colorectal cancer therapy. Med Oncol 40, 273 (2023). https://doi.org/10.1007/s12032-023-02151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02151-1

Keywords

Navigation