Skip to main content
Log in

Role of Colony-Stimulating Factors During High Dosage Chemotherapy

  • Review Article
  • Disease Treatment Review
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

The advent of recombinant colony-stimulating factors (CSFs) for clinical use in neutropenic states has focused attention on their potential benefit in combination with high dosage cancer chemotherapy (HDCT). HDCT has been used with substantial success for salvage and consolidation therapy and, more recently, for initial therapy. However, its use has been associated with profound myelosuppression. Rescue techniques such as bone marrow stem cell transplantation and/or peripheral blood progenitor cell support may well shorten myelosuppression but do not eliminate it completely.

Granulocyte-macrophage CSF and granulocyte CSF have been the most extensively investigated CSFs in clinical trials. Following marrow transfusion, administration of CSFs may decrease the duration of neutropenia, reduce the need for antibiotics, and shorten hospitalisation. Although CSFs were initially used only to enhance bone marrow recovery after marrow infusion, other new applications were subsequently discovered. CSFs may be used to mobilise peripheral blood progenitor cells for bone marrow support, or even for marrow stem cell substitution. In patients with graft failure, GSFs have been used in an attempt to rescue the failing marrow.

As experience with these agents has accumulated, the optimal use of each single CSF, such as dosage, schedule, specific treatment regimen and costs, has become better defined. As a result, protocols for HDGT incorporating the use of CSFs are becoming routine. Such use of CSFs has made HDCT a procedure that is better tolerated, more convenient to use on a large scale, and probably cheaper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frie III E, Canellos GP. Dose: a critical factor in cancer chemotherapy. Am J Med 1980; 69: 585–94

    Article  Google Scholar 

  2. Fefer A, Cheever MA, Greenberg PD. Identical-twin (syngeneic) marrow transplantation for hematologic cancers. J Natl Cancer Inst 1986; 76: 1269–73

    PubMed  CAS  Google Scholar 

  3. Appelbaum FR, Thomas ED. Review of the use of marrow transplantation in the treatment of non-Hodgkins lymphoma. J Clin Oncol 1983; 1: 440–7

    PubMed  CAS  Google Scholar 

  4. Metcalf D. Haemopoietic growth factors. Med J Aust 1988; 148: 516–19

    PubMed  CAS  Google Scholar 

  5. Demetri GD, Antman KH. Granulocyte-macrophage colony-stimulating factor (GM-CSF): preclinical and clinical investigations. Semin Oncol 1992; 362–85

    Google Scholar 

  6. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood 1991; 78: 2791–808

    PubMed  CAS  Google Scholar 

  7. Warren MK, Ralph P. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony-stimulating activity. J Immunol 1986; 137: 2281–5

    PubMed  CAS  Google Scholar 

  8. Hume DA, Pavli P, Donahue RE, et al. The effect of human recombinant macrophage colony-stimulating factor (CSF-1) on the murine mononuclear phagocytic system in vivo. J Immunol 1988; 141: 3405–9

    PubMed  CAS  Google Scholar 

  9. Bagby GC. Interleukin-1 and hematopoiesis. Blood Rev 1989; 3: 152–61

    Article  PubMed  Google Scholar 

  10. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 77: 1627–52

  11. Lopez AF, To LB, Yang YC, et al. Stimulation of proliferation and function of human cells by primate interleukin-3. Proc Natl Acad Sci USA 1987; 84: 2761–5

    Article  PubMed  CAS  Google Scholar 

  12. McNiece I, Stewart F, Deacon D, et al. Detection of human CSF with a high proliferative potential. Blood 1989; 74: 609–12

    PubMed  CAS  Google Scholar 

  13. Zsebo K, Wypych J, McNiece I, et al. Identification, purification and biological characterization of hematopoietic stem cell factor from buffalo rat liver conditioned medium. Cell 1990; 63: 195–201

    Article  PubMed  CAS  Google Scholar 

  14. Migliaccio G, Migliaccio AR, Druzin ML, et al. Long-term generation of colony-forming cells in liquid culture of CD34+ cord blood cells in the presence of recombinant human stem cell factor. Blood 1992; 79: 2620–7

    PubMed  CAS  Google Scholar 

  15. Brandt SJ, Peters WP, Atwater SK, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med 1988; 318: 869–76

    Article  PubMed  CAS  Google Scholar 

  16. Blazar BR, Kersy JH, McGlave PB, et al. In vivo administration of recombinant human granulocyte-macrophage factor in acute lymphoblastic leukemia patients receiving purged autografts. Blood 1989; 73: 849–57

    PubMed  CAS  Google Scholar 

  17. Nemunatis J, Singer JW, Buckner CD, et al. Use of recombinant human granulocyte-macrophage colony-stimulating factor in autologous marrow transplantation for lymphoid malignancies. Blood 1988; 72: 834–6

    Google Scholar 

  18. Gianni AM, Bregni M, Stern AC, et al. Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoeitic stem cells for autotransplantation. Lancet 1989; 2: 580–5

    Article  PubMed  CAS  Google Scholar 

  19. Devereaux S, Linch DC, Gribben JG, et al. GM-CSF accelerates neutrophil recovery after autologous transplantation for Hodgkin’s disease. Bone Marrow Transplant 1989; 4: 49–54

    PubMed  CAS  Google Scholar 

  20. Powles R, Smith C, Milan S, et al. Human recombinant GM-CSF in allogeneic bone marrow transplantation. A placebo-controlled trial. Lancet 1990; 336: 1417–20

    Article  PubMed  CAS  Google Scholar 

  21. Nemunaitis J, Rabinowe SN, Singer JW, et al. Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med 1991; 324: 1773–8

    Article  PubMed  CAS  Google Scholar 

  22. Link H, Boogarets MA, Carella AM, et al. A controlled trial of recombinant human granulocyte-macrophage colony-stimulating factor after total body irradiation, high-dose chemotherapy, and autologous bone marrow transplantation for acute lymphoblastic leukemia or malignant lymphoma. Blood 1992; 80: 2188–95

    PubMed  CAS  Google Scholar 

  23. Gorin NC, Coiffier B, Hayat M, et al. Recombinant human granulocyte-macrophage stimulating factor after high-dose chemotherapy and autologous bone-marrow transplantation with unpurged and purged marrow in non-Hodgkin’s lymphoma: a double-blind placebo-controlled trial. Blood 1992; 80: 1149–57

    PubMed  CAS  Google Scholar 

  24. Gulati SC, Bennett CL. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as adjunct therapy in relapsed Hodgkin disease. Ann Intern Med 1992; 116: 177–82

    PubMed  CAS  Google Scholar 

  25. Advani R, Chao NJ, Homing SJ, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous haemopoietic stem cell transplantation for lymphoma. Ann Intern Med 1992; 116: 183–9

    PubMed  CAS  Google Scholar 

  26. Peters WP, Kurtzberg J, Kirkpatrick G, et al. GM-CSF primed peripheral blood progenitor cells (PBPC) coupled with autologous bone marrow transplantation (ABMT) will eliminate absolute leukopenia following high-dose chemotherapy (HDC). Blood 1989; 74: 50

    Google Scholar 

  27. Sheridan WP, Morstyn G, Wolf M, et al. Granulocyte colony-stimulating factor and neutrophil recovery after high-dose chemotherapy and autologous bone marrow transplantation. Lancet 1989; 2: 891–5

    Article  PubMed  CAS  Google Scholar 

  28. Masaoka T, Takaku F, Kato S, et al. Recombinant human granulocyte colony-stimulating factor in allogeneic transplantation. Exp Hematol 1989; 17: 1047–50

    PubMed  CAS  Google Scholar 

  29. Taylor KM, Jagannath S, Spitzer G, et al. Recombinant human granulocyte colony-stimulating factor hastens recovery after high-dose chemotherapy and autologous bone marrow transplantation in Hodgkin’s disease. J Clin Oncol 1989; 7: 1791

    PubMed  CAS  Google Scholar 

  30. Masaoka T, Moriyama Y, Kata S, et al. A randomized, placebo-controlled study of KRN8601 (G-CSF) in patients with bone marrow transplantation. Jpn J Med 1990; 3: 233–9

    Google Scholar 

  31. Wilson WH, Bryant G, Jain V, et al. Phase I study of infusional interleukin-1 alpha with ifosfomide, carboplatin and etoposide and autologous bone marrow transplant. Proc Annu Meet Am Soc Clin Oncol 1992; 11: A1146

    Google Scholar 

  32. Fibbe WE, Raemaekers J, Verdonck LF, et al. Human recombinant interleukin-3 after autologous bone marrow transplantation for malignant lymphoma. Ann Oncol 1992; 3 Suppl. 1: 163

    Google Scholar 

  33. Peters WP, Ross M, Vredenburgh JJ, et al. Comparative effects of GM-CSF and G-CSF on priming for collection of peripheral blood progenitors for use after high-dose chemotherapy. Blood 1993; 81: 1710

    Google Scholar 

  34. De Witte T, Gratwohl A, Van Der Lely N, et al. A multicentre double blind randomized trial of recombinant human granulocyte-macrophage colony-stimulating factor in recipients of allogeneic T-cell depleted bone marrow. Blood 1990; 76 Suppl. 1: 139a

    Google Scholar 

  35. Masaoka T, Motoyoshi K, Takaku F, et al. Administration of human urinary colony stimulating factor after bone marrow transplantation. Bone Marrow Transplant 1988; 3: 121–7

    PubMed  CAS  Google Scholar 

  36. Hollingshead LM, Goa KL. Recombinant granulocyte colony-stimulating factor (rG-CSF): a review of its pharmacological properties and prospective role in neutropenic conditions. Drugs 1991; 42: 300–30

    Article  PubMed  CAS  Google Scholar 

  37. Cline MJ, Golde DW. Mobilization of hematopoietic stem-cells (CFUc) into the peripheral blood of man by endotoxin. Exp Hematol 1977; 5: 186–90

    PubMed  CAS  Google Scholar 

  38. Korbling M, Fliedner TM, Calco W, et al. Albumin density gradient purification of canine haemopoietic blood stem-cells: long term allogeneic engraftment without GVH reaction. Exp Hematol 1979; 7: 277–80

    PubMed  CAS  Google Scholar 

  39. Richmann CM, Weiner RS, Yankee RA. Increase in circulating cells following chemotherapy in man. Blood 1976; 47: 1031–9

    Google Scholar 

  40. Socinski MA, Cannistra SA, Elias A, et al. Granulocyte-macrophage colony-stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988; 1: 1194–8

    Article  PubMed  CAS  Google Scholar 

  41. Kessinger A, Armitage JO. The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood 1991; 77: 211–13

    PubMed  CAS  Google Scholar 

  42. Sheridan WP, Begley CG, Juttner CA, et al. Effect of peripheral blood progenitor cells mobilised by filgrastin (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 1992; 339: 640–4

    Article  PubMed  CAS  Google Scholar 

  43. Elias AD, Ayash L, Anderson KC, et al. Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer. Blood 1992; 79: 3036–44

    PubMed  CAS  Google Scholar 

  44. Chao NJ, Schriber JR, Grimes K, et al. Granulocyte colony-stimulating factor mobilized peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 1993; 81: 2031–5

    PubMed  CAS  Google Scholar 

  45. Bensinger W, Singer J, Appelbaum F, et al. Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor. Blood 1993; 81: 3158–63

    PubMed  CAS  Google Scholar 

  46. Bishop RB, Anderson JR, Jackson JD, et al. High-dose therapy and peripheral blood progenitor cell transplantation: effects of recombinant human granulocyte-macrophage colony-stimulating factor on the autograft. Blood 1994; 83: 610–6

    PubMed  CAS  Google Scholar 

  47. Pettengell R, Testa NG, Swindell R, et al. Transplantation potential of hematopoietic cells released into the circulation during routine chemotherapy for non-Hodgkin’s lymphoma. Blood 1993; 82: 2239–48

    PubMed  CAS  Google Scholar 

  48. Lemoli RM, Tafuri A, Strife A, et al. Proliferation of human hematopoietic progenitors in long-term bone marrow cultures in gas-permeable plastic bags is enhanced by colony-stimulating factors. Exp Hematol 1992; 20: 569–75

    PubMed  CAS  Google Scholar 

  49. Nemunaitis J, Singer JW, Buckner CD, et al. Use of recombinant human granulocyte-macrophage colony-stimulating factor in graft failure after bone marrow transplantation. Blood 1990; 76: 245–53

    PubMed  CAS  Google Scholar 

  50. Brandwein JM, Nayar R, Baker MA, et al. GM-CSF therapy for delayed engraftment after autologous bone marrow transplantation. Exp Hematol 1991; 19: 191–5

    PubMed  CAS  Google Scholar 

  51. Crump M, Couture F, Kovacs M, et al. Interleukin-3 followed by GM-CSF for delayed engraftment after autologous bone marrow transplantation. Exp Hematol 1993; 21: 405–10

    PubMed  CAS  Google Scholar 

  52. Donahue RE, Seehra J, Metzger M, et al. Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 1988; 241: 1820–3

    Article  PubMed  CAS  Google Scholar 

  53. Wheeler C, Guinan E, Sieff C, et al. Interleukin 3 before marrow harvest and GM-CSF post autotransplant in patients with relapsed lymphoma: no enhancement of hematopoietic recovery. Blood 1992; 80 Suppl. 1: 85a; [abstract 330]

    Google Scholar 

  54. Masaoka T, Takaku F. Recombinant human granulocyte colony-stimulating factor in allogeneic bone marrow transplantation [abstract]. Proceedings of the 7th Congress of the Asian-Pacific Division of the International Society of Haematology; 1991 Nov 17–21; Hong Kong. 1991: 91

  55. Faulds D, Lewis NJW, Milne RJ. Recombinant granulocyte colony-stimulating factor (rG-CSF): pharmacoeconomic considerations in chemotherapy-induced neutropenia. Pharmaco-Economics 1992; 1: 231–49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariad, S., Geffen, D. Role of Colony-Stimulating Factors During High Dosage Chemotherapy. Clin. Immunother. 1, 449–459 (1994). https://doi.org/10.1007/BF03259037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259037

Keywords

Navigation